11 research outputs found

    Steroid receptor expression in the fish inner ear varies with sex, social status, and reproductive state

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gonadal and stress-related steroid hormones are known to influence auditory function across vertebrates but the cellular and molecular mechanisms responsible for steroid-mediated auditory plasticity at the level of the inner ear remain unknown. The presence of steroid receptors in the ear suggests a direct pathway for hormones to act on the peripheral auditory system, but little is known about which receptors are expressed in the ear or whether their expression levels change with internal physiological state or external social cues. We used qRT-PCR to measure mRNA expression levels of multiple steroid receptor subtypes (estrogen receptors: ERα, ERβa, ERβb; androgen receptors: ARα, ARβ; corticosteroid receptors: GR2, GR1a/b, MR) and aromatase in the main hearing organ of the inner ear (saccule) in the highly social African cichlid fish <it>Astatotilapia burtoni</it>, and tested whether these receptor levels were correlated with circulating steroid concentrations.</p> <p>Results</p> <p>We show that multiple steroid receptor subtypes are expressed within the main hearing organ of a single vertebrate species, and that expression levels differ between the sexes. We also show that steroid receptor subtype-specific changes in mRNA expression are associated with reproductive phase in females and social status in males. Sex-steroid receptor mRNA levels were negatively correlated with circulating estradiol and androgens in both males and females, suggesting possible ligand down-regulation of receptors in the inner ear. In contrast, saccular changes in corticosteroid receptor mRNA levels were not related to serum cortisol levels. Circulating steroid levels and receptor subtype mRNA levels were not as tightly correlated in males as compared to females, suggesting different regulatory mechanisms between sexes.</p> <p>Conclusions</p> <p>This is the most comprehensive study of sex-, social-, and reproductive-related steroid receptor mRNA expression in the peripheral auditory system of any single vertebrate. Our data suggest that changes in steroid receptor mRNA expression in the inner ear could be a regulatory mechanism for physiological state-dependent auditory plasticity across vertebrates.</p

    Effect of age on resolution of ventilator-associated pneumonia

    No full text

    Reductions in synaptic proteins and selective alteration of prepulse inhibition in male C57BL/6 mice after postnatal administration of a VIP receptor (VIPR2) agonist

    No full text
    RATIONALE: An abundance of genetic and epidemiologic evidence as well as longitudinal neuroimaging data point to developmental origins for schizophrenia and other mental health disorders. Recent clinical studies indicate that microduplications of VIPR2, encoding the vasoactive intestinal peptide (VIP) receptor VPAC2, confer significant risk for schizophrenia and autism spectrum disorder. Lymphocytes from patients with these mutations exhibited higher VIPR2 gene expression and VIP responsiveness (cAMP induction), but mechanisms by which overactive VPAC2 signaling may lead to these psychiatric disorders are unknown. OBJECTIVES: We subcutaneously administered the highly-selective VPAC2 receptor agonist Ro 25-1553 to C57BL/6 mice from postnatal day 1 (P1) to P14 to determine if overactivation of VPAC2 receptor signaling during postnatal brain maturation affects synaptogenesis and selected behaviors. RESULTS: Western blot analyses on P21 revealed significant reductions of synaptophysin and postsynaptic density protein 95 (PSD-95) in the prefrontal cortex, but not in the hippocampus in Ro 25-1553-treated mice. The same postnatally-restricted treatment resulted in a disruption in prepulse inhibition of the acoustic startle measured in adult mice. No effects were observed in open-field locomotor activity, sociability in the three-chamber social interaction test, or fear conditioning or extinction. CONCLUSION: Overactivation of the VPAC2 receptor in the postnatal mouse results in a reduction in synaptic proteins in the prefrontal cortex and selective alterations in prepulse inhibition. These findings suggest that the VIPR2-linkage to mental health disorders may be due in part to overactive VPAC2 receptor signaling during a critical time of synaptic maturation

    Divergent Aging Characteristics in CBA/J and CBA/CaJ Mouse Cochleae

    No full text
    Two inbred mouse strains, CBA/J and CBA/CaJ, have been used nearly interchangeably as ‘good hearing’ standards for research in hearing and deafness. We recently reported, however, that these two strains diverge after 1 year of age, such that CBA/CaJ mice show more rapid elevation of compound action potential (CAP) thresholds at high frequencies (Ohlemiller, Brain Res. 1277: 70–83, 2009). One contributor is progressive decline in endocochlear potential (EP) that appears only in CBA/CaJ. Here, we explore the cellular bases of threshold and EP disparities in old CBA/J and CBA/CaJ mice. Among the major findings, both strains exhibit a characteristic age (∼18 months in CBA/J and 24 months in CBA/CaJ) when females overtake males in sensitivity decline. Strain differences in progression of hearing loss are not due to greater hair cell loss in CBA/CaJ, but instead appear to reflect greater neuronal loss, plus more pronounced changes in the lateral wall, leading to EP decline. While both male and female CBA/CaJ show these pathologies, they are more pronounced in females. A novel feature that differed sharply by strain was moderate loss of outer sulcus cells (or ‘root’ cells) in spiral ligament of the upper basal turn in old CBA/CaJ mice, giving rise to deep indentations and void spaces in the ligament. We conclude that CBA/CaJ mice differ both quantitatively and qualitatively from CBA/J in age-related cochlear pathology, and model different types of presbycusis

    Effects of the Menstrual Cycle and Oral Contraception on Singers' Pitch Control

    No full text
    Purpose: Difficulties with intonation and vibrato control during the menstrual cycle have been reported by singers; however, this phenomenon has not yet been systematically investigated. Method: A double-blind randomized placebo-controlled trial assessing effects of the menstrual cycle and use of a combined oral contraceptive pill (OCP) on pitch control in singing is presented. Audio-electrolaryngograph recordings were made and blood samples were taken from 9 singers in each of the 3 phases of the menstrual cycle both under the placebo and the OCP conditions for a total of 6 months. Participants sang an exercise consisting of an ascending octave followed by a descending major triad, starting on pitches F4 and B4. Pitch control was assessed in terms of the octave’s deviations from pure intonation and of the vibrato rate and extent. Results: Significant differences were found between the 3 phases of the cycle regarding octave size only for pitch F5 during OCP use. Significant vibrato rate differences between placebo and OCP conditions were found only for pitch F5. Conclusion: OCP use may have an effect on pitch control in singers. Possible explanations point to a complex interaction between hormonal milieu and pitch control, enhancing the need for longitudinal studies
    corecore