202 research outputs found

    Precision measurements of the scintillation pulse shape for low-energy recoils in liquid xenon

    Get PDF
    We present measurements of the scintillation pulse shape in liquid xenon for nuclear recoils (NR) and electronic recoils (ER) at electric fields of 0 to 0.5 kV/cm for energies << 15 keV and << 70 keV electron-equivalent, respectively. The average pulse shapes are well-described by an effective model with two exponential decay components, where both decay times are fit parameters. We find significant broadening of the pulse for ER due to delayed luminescence from the recombination process. In addition to the effective model, we fit a model describing the recombination luminescence for ER at zero field and obtain good agreement. We estimate the best performance of a combined S2/S1 and pulse shape ER/NR discrimination and show that even with 2 ns time resolution, the improvement over S2/S1 discrimination alone is marginal, so that pulse shape discrimination will likely not be useful for future dual-phase liquid xenon experiments looking for elastic dark matter recoil interactions

    Search for Event Rate Modulation in XENON100 Electronic Recoil Data

    Get PDF
    We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of WIMPs to electrons is excluded at 4.8 sigma.Comment: 6 pages, 4 figure

    A Uniform Description of Perioperative Brain MRI Findings in Infants with Severe Congenital Heart Disease:Results of a European Collaboration

    Get PDF
    BACKGROUND AND PURPOSE: A uniform description of brain MR imaging findings in infants with severe congenital heart disease to assess risk factors, predict outcome, and compare centers is lacking. Our objective was to uniformly describe the spectrum of perioperative brain MR imaging findings in infants with congenital heart disease. MATERIALS AND METHODS: Prospective observational studies were performed at 3 European centers between 2009 and 2019. Brain MR imaging was performed preoperatively and/or postoperatively in infants with transposition of the great arteries, single-ventricle physiology, or left ventricular outflow tract obstruction undergoing cardiac surgery within the first 6 weeks of life. Brain injury was assessed on T1, T2, DWI, SWI, and MRV. A subsample of images was assessed jointly to reach a consensus. RESULTS: A total of 348 MR imaging scans (180 preoperatively, 168 postoperatively, 146 pre- and postoperatively) were obtained in 202 infants. Preoperative, new postoperative, and cumulative postoperative white matter injury was identified in 25%, 30%, and 36%; arterial ischemic stroke, in 6%, 10%, and 14%; hypoxic-ischemic watershed injury in 2%, 1%, and 1%; intraparenchymal cerebral hemorrhage, in 0%, 4%, and 5%; cerebellar hemorrhage, in 6%, 2%, and 6%; intraventricular hemorrhage, in 14%, 6%, and 13%; subdural hemorrhage, in 29%, 17%, and 29%; and cerebral sinovenous thrombosis, in 0%, 10%, and 10%, respectively. CONCLUSIONS: A broad spectrum of perioperative brain MR imaging findings was found in infants with severe congenital heart disease. We propose an MR imaging protocol including T1-, T2-, diffusion-, and susceptibility-weighted imaging, and MRV to identify ischemic, hemorrhagic, and thrombotic lesions observed in this patient group

    Search for Two-Neutrino Double Electron Capture of 124^{124}Xe with XENON100

    Get PDF
    Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For 124^{124}Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of 124^{124}Xe using 7636 kg\cdotd of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90 % credibility limit on the half-life T1/2>6.5×1020T_{1/2}>6.5\times10^{20} yr. We also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and find a sensitivity of T1/2>6.1×1022T_{1/2}>6.1\times10^{22} yr after an exposure of 2 t\cdotyr.Comment: 6 pages, 4 figure

    Removing krypton from xenon by cryogenic distillation to the ppq level

    Get PDF
    The XENON1T experiment aims for the direct detection of dark matter in a cryostat filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β\beta-emitter 85^{85}Kr which is an intrinsic contamination of the xenon. For the XENON1T experiment a concentration of natural krypton in xenon nat\rm{^{nat}}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq = 1015^{-15} mol/mol) is required. In this work, the design of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4\cdot105^5 with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of nat\rm{^{nat}}Kr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN

    DARWIN: towards the ultimate dark matter detector

    Get PDF
    DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment forthe direct detection of dark matter using a multi-ton liquid xenon timeprojection chamber at its core. Its primary goal will be to explore theexperimentally accessible parameter space for Weakly Interacting MassiveParticles (WIMPs) in a wide mass-range, until neutrino interactions with thetarget become an irreducible background. The prompt scintillation light and thecharge signals induced by particle interactions in the xenon will be observedby VUV sensitive, ultra-low background photosensors. Besides its excellentsensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its largemass, low-energy threshold and ultra-low background level will also besensitive to other rare interactions. It will search for solar axions, galacticaxion-like particles and the neutrinoless double-beta decay of 136-Xe, as wellas measure the low-energy solar neutrino flux with <1% precision, observecoherent neutrino-nucleus interactions, and detect galactic supernovae. Wepresent the concept of the DARWIN detector and discuss its physics reach, themain sources of backgrounds and the ongoing detector design and R&D efforts

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector
    corecore