10,287 research outputs found

    Fiberoptisch unterstützte endotracheale Intubation durch die Larynxmaske im Kindesalter

    Get PDF
    Zusammenfassung: Die fiberoptisch assistierte endotracheale Intubation durch die Larynxmaske ist ein sicheres Verfahren, um beim pädiatrischen Patienten mit unerwarteter sowie auch bei bekannter schwieriger Intubation den Atemweg einfach und zuverlässig zu sichern. Die Methode stellt eine Standardtechnik in der Atemwegssicherung dar; sie muss einerseits Bestandteil der klinischen Ausbildung sein und andererseits regelmäßig trainiert werden. Das Entfernen der Larynxmaske über den Endotrachealtubus wird durch dessen kurze Länge erschwert bzw. der Endotrachealtubus kann dabei sehr leicht aus der Trachea dislozieren. Nebst einer Vielzahl von Techniken, die Larynxmaske sicher über den Endotrachealtubus zu entfernen, bietet der Cook Airway Exchange Catheter in der Kinderanästhesie eine einfache Methode, nicht nur die Larynxmaske sicher über den Tubus zu entfernen, sondern anschließend auch den geeigneten Tubus einzuführen. Dies ist insbesondere bei gecufften Tuben wünschenswert, bei denen der Pilotballon des gecufften Tubus zu groß ist, um Larynxmasken der Größen 2,5 und kleiner zu passieren. Die vorliegende Arbeit zeigt schrittweise die fiberoptisch assistierte endotracheale Intubation durch die Larynxmaske beim Kind und diskutiert ihre Bedeutung. Eine Liste mit aufeinanderabgestimmten Größen von Larynxmasken, Endotrachealtuben und Airway Exchange Cathetern ist ebenfalls enthalte

    Density-functional calculation of ionization energies of current-carrying atomic states

    Full text link
    Current-density-functional theory is used to calculate ionization energies of current-carrying atomic states. A perturbative approximation to full current-density-functional theory is implemented for the first time, and found to be numerically feasible. Different parametrizations for the current-dependence of the density functional are critically compared. Orbital currents in open-shell atoms turn out to produce a small shift in the ionization energies. We find that modern density functionals have reached an accuracy at which small current-related terms appearing in open-shell configurations are not negligible anymore compared to the remaining difference to experiment.Comment: 7 pages, 2 tables, accepted by Phys. Rev.

    Behavioral and Electrophysiological Effects of Transcranial Direct Current Stimulation of the Parietal Cortex in a Visuo-Spatial Working Memory Task

    Get PDF
    Impairments of working memory (WM) performance are frequent concomitant symptoms in several psychiatric and neurologic diseases. Despite the great advance in treating the reduced WM abilities in patients suffering from, e.g., Parkinson’s and Alzheimer’s disease by means of transcranial direct current stimulation (tDCS), the exact neurophysiological underpinning subserving these therapeutic tDCS-effects are still unknown. In the present study we investigated the impact of tDCS on performance in a visuo-spatial WM task and its underlying neural activity. In three experimental sessions, participants performed a delayed matching-to-sample WM task after sham, anodal, and cathodal tDCS over the right parietal cortex. The results showed that tDCS modulated WM performance and its underlying electrophysiological brain activity in a polarity-specific way. Parietal tDCS altered event-related potentials and oscillatory power in the alpha band at posterior electrode sites. The present study demonstrates that posterior tDCS can alter visuo-spatial WM performance by modulating the underlying neural activity. This result can be considered an important step toward a better understanding of the mechanisms involved in tDCS-induced modulations of cognitive processing. This is of particular importance for the application of electrical brain stimulation as a therapeutic treatment of neuropsychiatric deficits in clinical populations

    Probing the 5f Electrons in Am-I by Hybrid Density Functional Theory

    Full text link
    The ground states of the actinides and their compounds continue to be matters of considerable controversies. Experimentally, Americium-I (Am-I) is a non-magnetic dhcp metal whereas theoretically an anti-ferromagnetic ground state is predicted. We show that hybrid density functional theory, which admixes a fraction of exact Hartree-Fock (HF) exchange with approximate DFT exchange, can correctly reproduce the ground state properties of Am. In particular, for a 0.40 fraction of HF exchange we obtain a non-magnetic ground state with equilibrium atomic volume, bulk modulus, 5f electron population, and the density of electronic states all in good agreement with experimental data. We argue that the exact HF exchange corrects the overestimation of the approximate DFT exchange interaction.Comment: 1 table, 4 figures. Chemical Physics Letters, in press (2009

    Theoretical analysis of magnetic coupling in sandwich clusters V_n(C_6H_6)_{n+1}

    Full text link
    The mechanism of ferromagnetism stability in sandwich clusters Vn_n(C6_6H6_6)n+1_{n+1} has been studied by first-principles calculation and model analysis. It is found that each of the three types of bonds between V and benzene (Bz) plays different roles. V 3dz2_{z^2} orbital, extending along the molecular axis, is weakly hybridized with Bz's HOMO-1 orbital to form the σ\sigma-bond. It is quite localized and singly occupied, which contributes 1μB\mu_B to the magnetic moment but little to the magnetic coupling of neighboring V magnetic moments. The in-plane dx2y2_{x^2-y^2}, dxy_{xy} orbitals are hybridized with the LUMO of Bz and constitute the δ\delta-bond. This hybridization is medium and crucial to the magnetic coupling though the δ\delta states have no net contribution to the total magnetic moment. dxz_{xz}, dyz_{yz} and HOMO of Bz form a quite strong π\pi-bond to hold the molecular structure but they are inactive in magnetism because their energy levels are far away from the Fermi level. Based on the results of first-principles calculation, we point out that the ferromagnetism stability is closely related with the mechanism proposed by Kanamori and Terakura [J. Kanamori and K. Terakura, J. Phys. Soc. Jpn. 70, 1433 (2001)]. However, the presence of edge Bz's in the cluster introduces an important modification. A simple model is constructed to explain the essence of the physical picture.Comment: 16 pages, 7 figure

    On "the complete basis set limit" and plane-wave methods in first-principles simulations of water

    Full text link
    Water structure, measured by the height of the first peak in oxygen-oxygen radial distributions, is converged with respect to plane-wave basis energy cutoffs for ab initio molecular dynamics simulations, confirming the reliability of plane-wave methods.Comment: 9 pages, 3 figure

    Electronic structure of crystalline binary and ternary Cd-Te-O compounds

    Full text link
    The electronic structure of crystalline CdTe, CdO, α\alpha-TeO2_2, CdTeO3_3 and Cd3_3TeO6_6 is studied by means of first principles calculations. The band structure, total and partial density of states, and charge densities are presented. For α\alpha-TeO2_2 and CdTeO3_3, Density Functional Theory within the Local Density Approximation (LDA) correctly describes the insulating character of these compounds. In the first four compounds, LDA underestimates the optical bandgap by roughly 1 eV. Based on this trend, we predict an optical bandgap of 1.7 eV for Cd3_3TeO6_6. This material shows an isolated conduction band with a low effective mass, thus explaining its semiconducting character observed recently. In all these oxides, the top valence bands are formed mainly from the O 2p electrons. On the other hand, the binding energy of the Cd 4d band, relative to the valence band maximum, in the ternary compounds is smaller than in CdTe and CdO.Comment: 13 pages, 15 figures, 2 tables. Accepted in Phys Rev

    Spin Resolution of the Electron-Gas Correlation Energy: Positive same-spin contribution

    Full text link
    The negative correlation energy per particle of a uniform electron gas of density parameter rsr_s and spin polarization ζ\zeta is well known, but its spin resolution into up-down, up-up, and down-down contributions is not. Widely-used estimates are incorrect, and hamper the development of reliable density functionals and pair distribution functions. For the spin resolution, we present interpolations between high- and low-density limits that agree with available Quantum Monte Carlo data. In the low-density limit for ζ=0\zeta = 0, we find that the same-spin correlation energy is unexpectedly positive, and we explain why. We also estimate the up and down contributions to the kinetic energy of correlation.Comment: new version, to appear in PRB Rapid Communicatio

    Timesaving Double-Grid Method for Real-Space Electronic-Structure Calculations

    Full text link
    We present a simple and efficient technique in ab initio electronic-structure calculation utilizing real-space double-grid with a high density of grid points in the vicinity of nuclei. This technique promises to greatly reduce the overhead for performing the integrals that involves non-local parts of pseudopotentials, with keeping a high degree of accuracy. Our procedure gives rise to no Pulay forces, unlike other real-space methods using adaptive coordinates. Moreover, we demonstrate the potential power of the method by calculating several properties of atoms and molecules.Comment: 4 pages, 5 figure

    Quantum mechanical ab-initio simulation of the electron screening effect in metal deuteride crystals

    Full text link
    In antecedent experiments the electron screening energies of the d+d reactions in metallic environments have been determined to be enhanced by an order of magnitude in comparison to the case of gaseous deuterium targets. The analytical models describing averaged material properties have not been able to explain the experimental results so far. Therefore, a first effort has been undertaken to simulate the dynamics of reacting deuterons in a metallic lattice by means of an ab-initio Hartree-Fock calculation of the total electrostatic force between the lattice and the successively approaching deuterons via path integration. The calculations have been performed for Li and Ta, clearly showing a migration of electrons from host metallic to the deuterium atoms. However, in order to avoid more of the necessary simplifications in the model the utilization of a massive parallel supercomputer would be required.Comment: 11 pages, 12 figures, svjour class. To be published in Eur. Phys. J.
    corecore