588 research outputs found

    Variation in Stability of Endogenous Reference Genes in Fallopian Tubes and Endometrium from Healthy and Ectopic Pregnant Women

    Get PDF
    RT-qPCR is commonly employed in gene expression studies in ectopic pregnancy. Most use RN18S1, β-actin or GAPDH as internal controls without validation of their suitability as reference genes. A systematic study of the suitability of endogenous reference genes for gene expression studies in ectopic pregnancy is lacking. The aims of this study were therefore to evaluate the stability of 12 reference genes and suggest those that are stable for use as internal control genes in fallopian tubes and endometrium from ectopic pregnancy and healthy non-pregnant controls. Analysis of the results showed that the genes consistently ranked in the top six by geNorm and NormFinder algorithms, were UBC, GAPDH, CYC1 and EIF4A2 (fallopian tubes) and UBC and ATP5B (endometrium). mRNA expression of NAPE-PLD as a test gene of interest varied between the groups depending on which of the 12 reference genes was used as internal controls. This study demonstrates that arbitrary selection of reference genes for normalisation in RT-qPCR studies in ectopic pregnancy without validation, risk producing inaccurate data and should therefore be discouraged

    Meson-Baryon Form Factors in Chiral Colour Dielectric Model

    Get PDF
    The renormalised form factors for pseudoscalar meson-baryon coupling are computed in chiral colour dielectric model. This has been done by rearranging the Lippmann-Schwinger series for the meson baryon scattering matrix so that it can be expressed as a baryon pole term with renormalized form factors and baryon masses and the rest of the terms which arise from the crossed diagrams. Thus we are able to obtain an integral equation for the renormalized meson-baryon form factors in terms of the bare form factors as well as an expression for the meson self energy. This integral equation is solved and renormalized meson baryon form factors and renormalized baryon masses are computed. The parameters of the model are adjusted to obtain a best fit to the physical baryon masses. The calculations show that the renormalized form factors are energy-dependent and differ from the bare form factors primarily at momentum transfers smaller than 1 GeV. At nucleon mass, the change in the form factors is about 10% at zero momentum transfer. The computed form factors are soft with the equivalent monopole cut-off mass of about 500 MeV. The renormalized coupling constants are obtained by comparing the chiral colour dielectric model interaction Hamiltonian with the standard form of meson-nucleon interaction Hamiltonian. The ratio of ΔNπ\Delta N\pi and NNπNN\pi coupling constants is found to be about 2.15. This value is very close to the experimental value.Comment: 16 pages, 7 postscript figure

    Optical Excitations and Field Enhancement in Short Graphene Nanoribbons

    Full text link
    The optical excitations of elongated graphene nanoflakes of finite length are investigated theoretically through quantum chemistry semi-empirical approaches. The spectra and the resulting dipole fields are analyzed, accounting in full atomistic details for quantum confinement effects, which are crucial in the nanoscale regime. We find that the optical spectra of these nanostructures are dominated at low energy by excitations with strong intensity, comprised of characteristic coherent combinations of a few single-particle transitions with comparable weight. They give rise to stationary collective oscillations of the photoexcited carrier density extending throughout the flake, and to a strong dipole and field enhancement. This behavior is robust with respect to width and length variations, thus ensuring tunability in a large frequency range. The implications for nanoantennas and other nanoplasmonic applications are discussed for realistic geometries

    Sex-specific mortality forecasting for UK countries: a coherent approach

    Get PDF
    This paper introduces a gender specific model for the joint mortality projection of three countries (England and Wales combined, Scotland, and Northern Ireland) of the United Kingdom. The model, called 2-tier Augmented Common Factor model, extends the classical Lee and Carter [26] and Li and Lee [32] models, with a common time factor for the whole UK population, a sex specific period factor for males and females, and a specific time factor for each country within each gender. As death counts in each subpopulation are modelled directly, a Poisson framework is used. Our results show that the 2-tier ACF model improves the in-sample fitting compared to the use of independent LC models for each subpopulation or of independent Li and Lee models for each couple of genders within each country. Mortality projections also show that the 2-tier ACF model produces coherent forecasts for the two genders within each country and different countries within each gender, thus avoiding the divergence issues arising when independent projections are used. The 2-tier ACF is further extended to include a cohort term to take into account the faster improvements of the UK ‘golden generation’

    Sensitivity of Localized Surface Plasmon Resonances to Bulk and Local Changes in the Optical Environment

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C copyright © 2009 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp810322qSingle rod-shaped and disk-shaped gold nanoparticles with sizes ranging from 60 to 162 nm were analyzed using dark-field scattering spectroscopy. The sensitivity of the localized surface plasmon resonance (LSPR) of each nanoparticle to both a bulk and a local change in the refractive index of the environment was obtained by monitoring the change in the spectral position of the LSPR. It was found that the rods were more sensitive to changes in both the local environment and the bulk environment, in particular rods with a length > 110 nm. This behavior was confirmed by finite element modeling of the structures that clearly indicated a saturation of the relative wavelength shift for the disks as the diameter increased whereas the sensitivity of the rods continued to increase linearly with increasing length. This disparity in the behavior of the two types of nanoparticle may in part be attributed to two principal effects associated with the presence of the substrate: first, that the proportion of the surface area of the nanoparticle in contact with the substrate is larger for the disk than for the rod; second, that the LSPR electromagnetic field is more concentrated within the superstrate for the rod compared to the disk. Further analysis of data obtained from modeling a changing local environment indicates that, although the rods are more sensitive, both rods and disks exhibit a similar field confinement

    Frequency comb transferred by surface plasmon resonance

    Get PDF
    Frequency combs, millions of narrow-linewidth optical modes referenced to an atomic clock, have shown remarkable potential in time/frequency metrology, atomic/molecular spectroscopy and precision LIDARs. Applications have extended to coherent nonlinear Raman spectroscopy of molecules and quantum metrology for entangled atomic qubits. Frequency combs will create novel possibilities in nano-photonics and plasmonics; however, its interrelation with surface plasmons is unexplored despite the important role that plasmonics plays in nonlinear spectroscopy and quantum optics through the manipulation of light on a sub-wavelength scale. Here, we demonstrate that a frequency comb can be transformed to a plasmonic comb in plasmonic nanostructures and reverted to the original frequency comb without noticeable degradation of <6.51 x 10(-19) in absolute position, 2.92 x 10(-19) in stability and 1Hz in linewidth. The results indicate that the superior performance of a well-defined frequency comb can be applied to nanoplasmonic spectroscopy, quantum metrology and subwavelength photonic circuits.open

    Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film

    Get PDF
    Stimuli-responsive colorimetric sensors are promising for various industrial and medical applications due to the capability of simple, fast, and inexpensive visualization of external stimuli. Here we demonstrate a thermoresponsive, smart colorimetric patch based on a thermoresponsive plasmonic microgel embedded in a stretchable hydrogel film. To achieve a fast and efficient thermoresponsive color change, raspberry-shaped plasmonic microgels were fabricated by decorating gold nanoparticles (AuNPs) on poly(N-isopropylacrylamide) (PNIPAM) microgels, which exhibit reversible and strain-insensitive color shifts (between red and grayish violet) in response to a temperature change. The smart colorimetric patch containing a plasmonic microgels exhibits a significant extinction peak shift (176 nm) in a short time (1 s), with a temperature-sensing resolution of 0.2 degrees C. Moreover, the transition temperature of the plasmonic microgel can be finely tuned by additives and comonomers, so that the exquisite temperature visualization can be conducted over a wide temperature range of 25-40 degrees C by assembling plasmonic microgel films with different transition temperatures into an array patch. For proof-of-concept demonstrations, a freestanding smart colorimetric patch was utilized as a spatial temperature scanner and a colorimetric thermometer for a thermoresponsive actuator, which is potentially applicable in smart, wearable sensors and soft robotics

    Intergenerational Communication – an interdisciplinary mapping review of research between 1996 and 2017

    Get PDF
    Concerns have been raised regarding the limited opportunities for intergenerational communication both outside and within the family. This “mapping review” draws together empirical literature in the topic published since 1996. Three hundred and twenty-four published studies met inclusion criteria, based on abstract review. The contents of each study were subjected to thematic analysis and nine broad themes emerged. These were (1) Dynamics of relationships, (2) Health & Well-being, (3) Learning & Literacy, (4) Attitudes, (5) Culture, (6) Digital, (7) Space, (8) Professional Development, and (9) Gender & Sexual Orientation. Studies commonly intersected disciplinary research areas. There was a marked rise across three key academic journals since 2007. An emergent finding was that a third of the studies relate to programs addressing intergenerational interventions, but many of these were primarily descriptive and failed to specify a primary outcome. Review implications and future research directions are discussed
    corecore