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Abstract This paper introduces a gender specific model for the joint mortality

projection of three countries (England and Wales combined, Scotland, and Northern

Ireland) of the United Kingdom. The model, called 2-tier Augmented Common

Factor model, extends the classical Lee and Carter [26] and Li and Lee [32] models,

with a common time factor for the whole UK population, a sex specific period factor

for males and females, and a specific time factor for each country within each

gender. As death counts in each subpopulation are modelled directly, a Poisson

framework is used. Our results show that the 2-tier ACF model improves the in-

sample fitting compared to the use of independent LC models for each subpopu-

lation or of independent Li and Lee models for each couple of genders within each

country. Mortality projections also show that the 2-tier ACF model produces

coherent forecasts for the two genders within each country and different countries

within each gender, thus avoiding the divergence issues arising when independent

projections are used. The 2-tier ACF is further extended to include a cohort term to

take into account the faster improvements of the UK ‘golden generation’.
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1 Introduction

The last three decades have witnessed tremendous developments in the area of

mortality modelling and forecasting, beginning with the Lee-Carter (LC) proposed

in [26]. This pioneering paper rapidly gained popularity and credit due to its

simplicity and ability to capture most of the variation in mortality rates. Over time,

various extensions and variants of the basic LC model have been put forward, see

for instance [2, 27, 35] and [5, 16] for a review and comparison. All these models

focus on a single population. When they are applied independently in modelling

multiple related subpopulations with similar demographic trends, they would

generally lead to divergent forecasts.

Diverging trends over time for closely related subpopulations is usually not a

desirable outcome. For example, due to genetic and biological reasons, male mortality

rates have constantly been higher than female rates, see [23]. However, if male

mortality improvements are faster than female ones and the two genders are projected

independently, the model may forecast male mortality rates eventually lower than

females. As noted in [Section 5.3,[8]], independent projection methodologies have to

be adjusted in order to avoid divergence issues. It is also intuitively true that the

mortality of populations that are geographically close or otherwise related is driven by

a common set of factors such as social-economic conditions, health and care system,

and the general environment. Therefore, non-divergent or ‘coherent’ models are

sought to address the issue of divergence. The augmented common factor model

(ACF) of [32] is an extension of the LC model and is an important step in producing a

model that captures both the short-term divergence and long-term coherence among

related populations (subpopulations). The ACF model, which we may also call 1-tier

ACF, uses a common factor to depict the long-term overall trend of the total

population, with additional specific factors included to capture the short-term

discrepancy from the common trend for each subpopulation. Several mortality models

for multiple populations have been proposed in the last decade, see for instance

[6, 11–13, 21, 22, 24, 28–30, 38, 39, 41]. See also [10, 14] for a review and comparison.

However, most of the multi-population models introduced so far, including the ACF,

have focused on achieving consistent forecasts among populations differentiated

according to a single dimension - either gender or geographical difference, but not

both.

In the UK, apart from age and gender being the traditional differentiating

mortality factors, the social-economic differences among three countries (England

& Wales combined, Scotland, and Northern Ireland) have led to notably different

mortality trends, at least in the short-term. The aim of this paper is to introduce an

extension to the ACF model, which we call 2-tier ACF, where a common factor

models the trend for the aggregated UK population, a sex specific factor captures the

discrepancy between each gender and the total population, and a country/sex

specific factor captures the discrepancy of a gender in a specific country from the

overall trend of that gender. This specification ensures to achieve coherence of

forecasts in both dimensions - mortality by gender within each country and

mortality by country within each gender. The 2-tier ACF model is then further
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extended to include a gender-specific cohort term (2-tier ACFC), allowing for the

fact that UK mortality experience in the past century cannot be explained by age and

period factors only but requires terms depending on the year of birth, see [40].

The contribution of this paper is twofold. On one hand, we aim at introducing a

model that, as described above, guarantees consistency across several dimensions,

gender and country. On the other hand, we apply this model to the mortality

experience of six subpopulations of the UK, consisting of two genders and three

countries within each gender, England and Wales combined, Scotland and Northern

Ireland. We use data from the Human Mortality Database for the period between

1975 and 2011 and project mortality rates up to the year 2050. The results from the

2-tier ACF and 2-tier ACFC are compared with the Lee-Carter model independently

applied to each of the six subpopulations and the 1-tier ACF model applied

independently to each couple of gender based populations within each country of

UK. The fitting period is chosen so as to make sure that the period index of the

common factor is reasonably linear. Due to the high volatility of mortality rates at

the very old ages, we have excluded ages above 100 from the analysis.

2 Forecasting models

2.1 Lee-Carter and augmented common factor models

The Lee-Carter model [26] is defined below. Letting mx;t be the central rate of

mortality at age x and time t, the LC model assumes that

logmx;t ¼ ax þ bxjt þ �x;t; ð1Þ

where ax represents the level of mortality at age x, jt is an index of the mortality

level at time t, bx represents the relative speed of mortality decrease at age x, and �x;t
is an error term that is Gaussian distributed with mean zero and variance r2� .

The augmented common factor (ACF) model, also known as 1-tier ACF in this

study, was originally introduced by [32]. It specifies the central rate of mortality

mx;t;i at age x, time t for gender i (i ¼ f ; m), as

logmx;t;i ¼ ax;i þ BxKt þ bx;ijt;i þ �x;t;i; ð2Þ

where BxKt is the common factor for the aggregated population including both

genders, bx;ijt;i is the sex-specific factor for gender i, and �x;t;i is the normally

distributed error term. The term Kt is designed to capture the overall time trend of

the aggregated population, while Bx measures the sensitivity to decrease in mortality

at age x. The fact that subpopulations share the same component BxKt is a necessary

and sufficient condition in order to avoid divergence in central forecast of sub-

populations, see [11]. Similarly, jt;i is the mortality time index of a specific gender,

and bx;i is the corresponding age sensitivity measure. The component bx;ijt;i hence
captures the trend in mortality of the specific gender i on top of the overall trend of

the aggregated population.
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2.2 2-tier augmented common factor model

In this section, we introduce a new two-tier extension to the ACF model including a

second additional factor for each specific country within each gender, resulting in a

joint double-layer model for different sex and countries. We call this model the

2-tier Augmented Common Factor model (2-tier ACF).

Instead of assuming that errors are normally distributed and homoscedastic as in

the original LC and ACF model, here, following [3], we model death counts directly

as Poisson variables. Denote by Dx;t;i;j, Ex;t;i;j and mx;t;i;j respectively the death

counts, central exposure and central mortality rates at age x, time t, for the i-th

gender and j-th country. The 2-tier ACF model is specified as follows:

Dx;t;i;j � PoissonðEx;t;i;jmx;t;i;jÞ; ð3Þ

logmx;t;i;j ¼ ax;i;j þ BxKt þ bx;ijt;i þ bx;i;jjt;i;j: ð4Þ

As in the ACF model, BxKt is the common factor for the population aggregated

across gender and countries while bx;ijt;i is the sex-specific factor for gender i. The
factor jt;i;j captures the mortality index of country j and gender i on top of the

combined trend allowed for by Kt and jt;i, while bx;i;j is the corresponding sensi-

tivity at age x.

To ensure the identifiability of the model, we restrain parameters by imposing the

following constraints:
X

x

Bx ¼ 1;
X

t

Kt ¼ 0;

X

x

bx;i ¼ 1;
X

t

jt;i ¼ 0 for all i;

X

x

bx;i;j ¼ 1;
X

t

jt;i;j ¼ 0 for all i and j:

ð5Þ

Once the different period terms have been estimated, they are modelled as obser-

vations of time series according to the following specification. As in the ACF

model, the common factor time index Kt is assumed to follow a random walk with

drift,

Kt ¼ Kt�1 þ d þ zt; ð6Þ

where zt is a white noise process. Following [32], the period terms jt;i for the two

genders are modelled as weakly stationary, AR(1) time series,

jt;i ¼ a0;i þ a1;ijt�1;i þ zt;i; ð7Þ

where the error terms zt;i; i ¼ m; f ; are independent white noise processes that are

independent of zt, and ja1;ij\1 for i ¼ m; f . Finally, the processes jt;i;j are

extrapolated by assuming again that they follow weakly stationary AR(1) time

series,
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jt;i;j ¼ a0;i;j þ a1;i;jjt�1;i;j þ zt;i;j; ð8Þ

where the error terms zt;i;j are independent white noise processes that are inde-

pendent of zt; zt;f and zt;m, and ja1;i;jj\1 for all i, j. Although there is no reason to

exclude the possibility of fitting higher order ARIMA models for Kt; jt;i and jt;i;j,
for the sake of simplicity we choose to remain consistent with the prevailing lit-

erature and use a random walk with drift and an AR(1) time series. Also, the

independence assumption among all mortality indices when extrapolating their

future values could be relaxed, see the discussion in Section 4.2. The precise details

of the maximum likelihood estimation algorithm used to fit the 2-tier ACF are given

in the Appendix 1, but, on a high level, the algorithm follows the three major stages:

– fit bax;i;j þ bBx
bKt;

– conditional on that, fit bbx;ibkt;i;
– conditional on the previous two stages, fit bbx;i;jbkt;i;j.

As an alternative to this estimation strategy based on successive stages, a maximum

likelihood approach could be pursued where all relevant parameters, age and period

terms, are fitted in a single step as in [10, 14]. Nonetheless, we prefer the former

approach as it embodies the philosophy of the 2-tier ACF approach: each bilinear

component is fitted in a way that best explains the overall trend of an aggregated

population, leaving any trends particular to a subpopulation to the successive stage

of the model fitting, See section 4.1 for an expanded discussion. As a by-product,

introducing a hierarchy between bilinear terms overcomes the well-known

identification issues arising in models spanning several period terms such as the

Renshaw and Haberman two-term model (LC2), as analysed in [19]. The

identifiability issues in multi-population models under a single step maximum

likelihood approach have been thoroughly discussed in [14].

2.3 2-tier augmented common factor model with cohort extension

The 2-tier ACF model does not take into account the cohort effect - the mortality

experience does not only depend on the calendar year, but is also related to the year

of birth. In the UK, the cohort effect has a narrower meaning and it refers to the

more rapid improvement in mortality experienced by the golden generation born

between 1925 and 1945, see [40]. Here we introduce a simple cohort extensions to

the 2-tier ACF model, called 2-tier augmented common factor model with cohort (2-

tier ACFC), and defined by replacing (4) with:

logmx;t;i;j ¼ ax;i;j þ BxKt þ bx;ijt;i þ bx;i;jjt;i;j þ gt�x;i: ð9Þ

The factors gt�x;i are gender-specific cohort term shared by all subpopulations

within the same gender i. The cohort term is specified for each gender but not for

each country, as the cohort effect differs between the two genders and is much more

prominent in the residual plots for the whole UK than for each individual country.

This choice of cohort extension will be further discussed in Section 4. The
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remaining parameters have the same meaning as in the 2-tier ACF model defined in

Section 2.2. To avoid divergence between the two genders over time, gt�x;i should

be extrapolated as a mean-reverting time series. Consistently with the modelling of

the different period terms, an AR(1) process is used here for simplicity:

gh;i ¼ b0;i þ b1;igh�1;i þ wh;i;

where h ¼ t � x, wh;i; i ¼ m; f are independent white noise processes that are

independent of zt; zt;i; zt;i;j for all i, j, and jb1;ij\1 for i ¼ m; f . To guarantee the

identifiability of the model, the constraint
P

h¼t�x gh;i ¼ 0 for all i is added to those

already stated in (5). In the 2-tier ACFC model, the term gt�x;i should be fitted prior

to fitting bx;i;jjt;i;j, but after fitting the bilinear terms BxKt and bx;i jt;i, because gt�x;i

is part of the common trend of gender i at the aggregated national level, and this

aligns better with the principle behind the 2-tier ACF model that common factors

are prioritised, before fitting any subpopulation specific factor.

3 Comparison of the models

In this section we focus on the comparison, using fitting metrics, residual plots and

long-term projection results, of the following four models fitted to the six

subpopulations of the UK for the period 1975-2011 and forecasted to 2050:

– the LC model (1) applied to each of the six subpopulations independently;1

– the 1-tier ACF model (2) applied to each of the three couples of gender specific

subpopulations within each country independently;2

– the 2-tier ACF with a common factor for the total UK population, a gender

specific factor, and a gender-country specific factor;

– the 2-tier ACFC model with a gender-specific cohort extension on top of the

2-tier ACF model.

The independent 1-tier ACF model employed here follows the spirit of the

P-division model introduced in [10], where the set of all subpopulations is

partitioned into groups sharing some common characteristics. The mortality within

group is then modelled using a common period term. In the present case, each

subgroup is given by the two genders within each country. The common time factor

is then complemented by adding an additional gender/country specific factor.

1 When fitting the independent LC models, death counts are specified through (3) coupled with (1)

deprived of the error term, and completed with the first identifiability condition in (5). Finally, each

period term is modelled as a random walk with drift.
2 When fitting the independent 1-tier ACF models, death counts are specified through (3) coupled with

(2) deprived of the error term, and completed with the first two identifiability conditions in (5). Finally,

each common period term is modelled as random walk with drift, while gender specific period terms are

modelled as AR(1) time series.
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3.1 Model fitting

The following metrics are examined in Table 1: Akaike information criterion (AIC),

Bayes information criterion (BIC), Mean Absolute Percentage Error (MAPE) and

Explanation Ratio (ER).3 The smaller the BIC, AIC and MAPE are, the higher the

ER is, the better a model fits past experience.

Table 1 BIC, AIC, MAPE and ER of LC, ACF, 2-tier ACF and 2-tier ACFC. f ¼ females, m ¼ males

Fitted model

Metrics Country Lee-Carter 1-tier ACF 2-tier ACF 2-tier ACFC

BIC Overall 214355 216459 205253 200153

AIC Overall 202953 201786 190580 183300

MAPE England and Wales (f) 0.05797 0.05787 0.05196 0.05045

Scotland (f) 0.14843 0.14452 0.14229 0.14060

Northern Ireland (f) 0.26665 0.25882 0.26243 0.26364

England and Wales (m) 0.05546 0.05387 0.04437 0.04303

Scotland (m) 0.12964 0.12711 0.12945 0.12357

Northern Ireland (m) 0.21604 0.20522 0.20633 0.20672

Overall 0.14570 0.14124 0.13872 0.13800

ER England and Wales (f) 0.96856 0.96358 0.98057 0.99140

Scotland (f) 0.91073 0.90641 0.91944 0.93077

Northern Ireland (f) 0.85879 0.86411 0.85709 0.86290

England and Wales (m) 0.98400 0.98488 0.98914 0.99555

Scotland (m) 0.95979 0.96199 0.96229 0.96797

Northern Ireland (m) 0.90242 0.91782 0.91493 0.91587

Overall 0.97839 0.97731 0.98579 0.99369

All numbers are exact values rather than percentages

3 These metrics are defined as follows:

AIC ¼ �2b‘ þ 2np; BIC ¼ �2b‘ þ np log nd ;

MAPE ¼ 1

nd

X

x;t;i;j

bdx;t;i;j � dx;t;i;j

dx;t;i;j

�����

�����;

ER ¼ 1�
P

x;t;i;j dx;t;i;j � bdx;t;i;j
h i2

P
x;t;i;j½dx;t;i;j � Ex;t;i;j exp ðax;i;jÞ�2

:

Here, np is the number of parameters net of the number of constraints, nd is the number of actual

observations, b‘ is the maximized log-likelihood, bmx;t;i;j, dx;t;i;j and bdx;t;i;j are respectively the fitted mor-

tality rate, observed death count and fitted death count at age x, year t, gender i and country j. The fitted

death counts are defined by bdx;t;i;j ¼ Ex;t;i;j bmx;t;i;j, where the fitted mortality rate bmx;t;i;j is given by (1)

deprived of the error term for the independent LC models; by (2) deprived of the error term for the

independent 1-tier ACF model; by (4) or (9) for the 2-tier ACF, respectively 2-tier ACFC models. In each

case parameters are replaced with their estimates. See [4] for the definition and properties of AIC and

BIC, and [28] for the use of MAPE and ER in the context of mortality forecasting.
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The AIC and BIC consistently rank the 2-tier ACFC, despite its relative

complexity, above the other models. Independent specification of each gender in

each country, or of each couple of genders within each country, does not seem to

provide any substantial benefit compared to the aggregate modelling of all countries

and genders. The addition a gender cohort term results in a further stark

improvement of both indices.

It should be noted, from the values of MAPE and ER, that all models fit better to

the mortality experience in England and Wales, less so to Scotland, and fit least well

to Northern Ireland. This is due to the fact that populations with larger exposures

have more stable historical mortality patterns and hence they are easier to fit using

Poisson-type models that implicitly weigh populations according to their exposure.

England and Wales is the largest population among the three countries; therefore the

model best fits its experience, followed by Scotland and then Northern Ireland. It is

clear from Table 1 that the 2-tier ACF fits better the historical experience than the

independent LC or 1-tier ACF models according to both MAPE and ER, while the

2-tier ACFC further improves the model fitting, its extent varying from moderate to

substantial depending on the country and gender. One notable exception is Northern

Ireland, where the 1-tier ACF slightly outperform the other models, confirming

nonetheless the need of country specific period terms common to both genders.

3.2 Residual plots

In this section, we inspect the residual plots of the four models against cohorts to

assess the models’ capacity in capturing systematic variations by cohort. The

residual plots against age and calendar year are fairly similar among different

models and are included in Appendix 1.

According to [28, 34], because the model fitting uses an over-dispersed Poisson

distribution, the scaled deviance residuals are given by the equation

sgnðdx;t;i;j � bdx;t;i;jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
devðx; t; i; jÞ

b/

s
;

where

devðx; t; i; jÞ ¼ 2 dx;t;i;j log
dx;t;i;j
bdx;t;i;j

� dx;t;i;j þ bdx;t;i;j

 !
;

b/ ¼
P

x;t;i;j devðx; t; i; jÞ
nd � np

:

Figures 1, 2, 3 and 4 give the residual plots against cohort for all six subpopulations

in the UK. For England and Wales and Scotland, there is a marked increase in the

randomness of residuals from the independent LC or independent 1-tier ACF

models (Figures 1, 2) to the 2-tier ACF model (Figure 3), and also from the 2-tier

ACF model to the 2-tier ACFC model (Figure 4). This means that the 2-tier ACF

model already captures some of the cohort effect internally due to the finely grained
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fitting of the bilinear terms, while the cohort term in the 2-tier ACFC further reduces

the systematic pattern in the residual plots dramatically. However, in the 2-tier

ACFC England and Wales male plot, some systematic pattern is still present,

suggesting the potential inclusion of an age modulator for the England and Wales

cohort term. For Northern Ireland, the cohort effect is not obvious even in the

residual plots of the independent LC model, so when we look at the mortality rates

of Northern Ireland on its own, the gender-specific cohort term could in principle be

dropped.

3.3 Long-term projection

In this section, the long-term projection behaviours of the models are compared,

with a focus on the cross-age smoothness, coherence among countries and

robustness of estimates in gender gaps. The independent LC, independent 1-tier

ACF, 2-tier ACF and 2-tier ACFC, fitted to the period 1975-2011, are now used to

project future mortality rates up to 2050.

Figure 5 gives the central estimates of log-scale mortality rates by age in year

2050 in the four models. Firstly, the 2-tier ACF forecasts much smoother age to age

mortality rates as compared to the independent LC and 1-tier ACF. The independent

Fig. 1 Residual plots by cohort of the LC model applied to the three countries and genders of UK
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LC projection for Scotland male even shows decreasing mortality by age at around

age 40. Lack of cross-age smoothness of the LC model has long been highlighted in

research, see for instance [5], as it uses only one age modulator bx to measure the

age sensitivity to mortality improvement for the specific subpopulation and assumes

that it remains constant. Over time, small differences between nearby bx terms lead

to large discrepancies in mortality forecasts between neighbouring ages, causing in

turn lack of smoothness. The independent 1-tier ACF model, despite the presence of

a common bilinear term, seems to be affected by the same issue. However, in the

2-tier ACF model, for each subpopulation the mortality improvement trend is

decomposed into tiers - the common trend of total population, the trend of a specific

gender, and the trend of the specific subpopulation. Overall, the more finely grained

model produce an age pattern displaying smoother cross-age mortality improve-

ment. The cohort factor in the 2-tier ACFC however, adds slightly more cross-age

volatility to ages between 30 and 40 than the 2-tier ACF model, as now mortality at

a specific age in a calendar year is also dependent on the variations from the year of

birth. The difference, however, is negligible.

Secondly, Figure 5 shows that the LC method produces much larger differences

among countries within each gender, and between different genders within each

Fig. 2 Residual plots by cohort of the 1-tier ACF model applied to each couple of genders within the
three countries of UK
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country, especially for the age range between 20 and 60. This is consistent with our

expectation that independent extrapolations of different subpopulations under the

LC method will produce divergent mortality rates for related populations, whereas

the ACF framework partially avoids such issue. As pointed out by [6], under the

ACF paradigm, the global improvement trend will dominate over time, due to the

fact that the subpopulation-specific components are mean reverting. The 2-tier ACF

further extends the ACF model, so that the projections for different countries are

dominated by the common gender trend. In other words, this extension ensures that

the ratios of different subpopulations of the same gender converge over time,

because the trend of the gender as a whole dominates over the trend in the specific

subpopulation. For subpopulations in countries j and k of the same gender i, the

difference of age specific mortality (on a log scale) is given, from (4), by:

logmx;t;i;j � logmx;t;i;k ¼ ðax;i;j � ax;i;kÞ þ ðbx;i;jjt;i;j � bx;i;kjt;i;kÞ:

As jt;i;j and jt;i;k are mean reverting processes, it is clear that the mortality spread is

a mean-reverting process too. Hence, the differences in mortality rates between

countries are more constrained in the 2-tier ACF projection compared to the

independent LC or even the independent 1-tier ACF. A similar remark applies to the

2-tier ACFC model.

Fig. 3 Residual plots by cohort of the 2-tier ACF model applied to the three countries of UK
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Fig. 4 Residual plots by cohort of the 2-tier ACFC model applied to the three countries of UK
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Figure 6 isolates the projection of age-specific mortality rates according to the

2-tier ACFC model, together with confidence bounds. For England and Wales and

Scotland, relatively narrow confidence intervals reflect the sizes of the correspond-

ing populations. For young adult (age 20 to 40) the confidence regions of males and

females are separated, implying that, even over a long horizon, mortality

convergence between sexes will be observed only at young and old ages. For

Northern Ireland, slightly wider confidence bounds are obtained as a consequence of

its smaller population. In this country, the apparent lack of smoothness across age of

the projection is put into the right perspective when comparing it with the

corresponding projection in Figure 5 under the independent LC or 1-tier ACF

model. The presence of period terms spanning the three countries helps in

dramatically reducing the age-to-age variation of mortality rates forecast.

Figure 7 shows the projected life expectancy at birth for all six subpopulations,

using the four models. For the independent LC model, life expectancy forecasts are

diverging. In particular, there is an increasing gap in life expectancy between

Scotland and the rest of the UK for both genders. Not surprisingly, although to a

lesser extent, this divergence is also observed for the independent 1-tier ACF model.

As suggested by [33], the higher mortality experienced by Scotland before 1980 was

most likely due to the deprivation and poverty linked to the industrial employment

patterns. Since 1980, the cause of the higher mortality in Scotland is most likely

related to the community disruption caused by deindustrialisation, which affected

the West of Scotland more than the rest of UK. These essential historical factors

may be continuing to the present day, implying lower life expectancy in Scotland as

compared to the rest of the UK. However, it is difficult to justify an increasingly

widening gap in mortality between (geographically, politically and socially) related

Fig. 6 Projected central death rates (log scale) by age and country in 2050 for the 2-tier ACFC model
and 95% confidence bounds

Sex-specific mortality forecasting 81

123



countries in four decades time. Scotland is the only country so far providing free

personal social care for those aged 65 or above, and has a level of health funding per

head much higher than England. Latest research has also shown that the gap of

health system performance indicators has narrowed between Scotland and rest of

UK due to dramatic improvements in Scotland since 2010, see [1, 9]. Greater

regional equality across the UK is an objective underlying all public policies, so it is

reasonably expected that the gap within countries in the same gender should be

narrowing down, as it can be observed in the 2-tier ACF (and 2-tier ACFC) model.

There is no material difference between these two models in terms of long-term life

expectancy projection, but a closer inspection shows that within each gender, the

country gaps are closing at a slower pace if the cohort effect is considered.

The differences among the four models become more obvious in Figure 8, when life

expectancy at retirement age 65 is projected. The independent LC model even forecasts

an increasing gap between Northern Ireland and England and Wales for males, and the

independent 1-tier ACF extends this undesirable pattern to females as well. Although

Northern Ireland’s higher rate of suicide, maternal and infant conditions and cancers

have historically contributed to the male life expectancy gap, since 1980–82 Northern

Ireland’s life expectancy has been improving at a faster pace than England and Wales,

see [25]. A slowly narrowing gap allowing for short-term disparities, as forecasted by the

2-tier ACFC, provides a much more reasonable outlook.

The 2-tier ACFC (or 2-tier ACF) model also ensures that the male-female

expected mortality ratios (on a log scale) converge over time to long term limits that

are constrained in a way that is appropriate when comparing related countries. In the

2-tier ACFC, for country j, the male-female mortality ratio on a log scale is given,

from (9), by:

1980 2020

65
70

75
80

85
90

Lee−Carter

Year

Li
fe

 E
xp

ec
ta

nc
y 

at
 b

irt
h

1980 2020

65
70

75
80

85
90

ACF

Year

Li
fe

 E
xp

ec
ta

nc
y 

at
 b

irt
h

1980 2020

65
70

75
80

85
90

2−tier ACF

Year
Li

fe
 E

xp
ec

ta
nc

y 
at

 b
irt

h
1980 2020

65
70

75
80

85
90

2−tier ACFC

Year

Li
fe

 E
xp

ec
ta

nc
y 

at
 b

irt
h

Female England & Wales
Female Scotland
Female Northern Ireland

Male England & Wales
Male Scotland
Male Northern Ireland

Fig. 7 Life expectancy at birth by calendar year and country
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logmx;t;m;j � logmx;t;f ;j ¼ðax;m;j � ax;f ;jÞ þ ðbx;mjt;m � bx;fjt;f Þ
þ ðgm;t�x � gf ;t�xÞ þ ðbx;m;jjt;m;j � bx;f ;jjt;f ;jÞ:

For each country, the male-female mortality ratio will share the common component

ðbx;mjt;m � bx;fjt;f Þ þ ðgm;t�x � gf ;t�xÞ, which is reverting to a positive long term

mean capturing the overall trend in gender differences for all territories. The

component bx;m;jjt;m;j � bx;f ;jjt;f ;j could possibly converge to a non-zero mean, but

after fitting the overall trend and gender trends, jt;m;j and jt;f ;j are normally best

fitted by AR(1) processes with long term zero mean - the results actually show that

male-female ratio of each country converge to the same positive limit over time.

In Figure 9, the male-female mortality ratio (on a square root scale) for England

& Wales is plotted against age for a selection of years, and the results are in line

with the understanding that sex differences in mortality are mainly contributed by

the high mortality of very young and middle aged males, see [23]. It can be seen that

for the LC projection, as also found by [21], at the very young ages, when the

number of deaths is very small, undesirable projection outcomes of sex ratios less

than 1 may occur. The coherent projections under the 1-tier and 2-tier ACF do not

have such issues. The independent LC produce increasing sex ratios up to as high as

2 in 2050 for age groups between 30 and 50, again showing the undesirable features

of divergence in long-term projections, while sex ratios from the 2-tier ACF model

remain stable and constrained. However, sex ratios in England and Wales follow a

stable pattern for the successive 40 years under the 1-tier and 2-tier ACF model,

which is unlikely to be true. Compared to the 2-tier ACF, projecting the cohort

factor of each gender independently introduces some additional variation over the
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forecast years for the 2-tier ACFC, while keeping the sex ratios constrained in a

stable and reasonable range. Figure 10 isolates the male-female mortality ratio (on a

square root scale) for the 2-tier ACFC model for the three countries, together with
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years for the 2-tier ACFC model and 95% confidence bounds
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confidence intervals. Again, the uncertainty around mortality ratios reflect the

corresponding population sizes, with Northern Ireland dominating Scotland which

in turn dominates England and Wales. It is remarkable that, for Northern Ireland,

mortality for some young adult males is forecast to be as high as four times as the

corresponding female mortality.

4 Further discussions and concluding remarks

4.1 Critical appraisal of the 2-tier ACFC model.

In (9), the cohort term is gender specific but not country specific. This is primarily

driven by the finding that the cohort effect for males and females of the whole UK

observed in the 1-tier ACF residuals (Figure 8) is much more significant than the

cohort effect for each of the six subgroups under the 2-tier ACF (Figure 5). Also, in

Figure 11, very distinctive cohort patterns for different genders can be seen.

Therefore, we believe that the cohort trend is more significant on a gender specific

level, and, in the 2-tier ACFC model, it should be fitted after estimating the term

ax;i;j þ BxKt but before fitting the term bx;i;jjt;i;j.
This approach is analogous to that of [41] to fit cohort extensions of the Poisson

Common FactorModel (PCFM) of [28], but is fundamentally different from the method

proposed by [36]where,when extending theLCmodel to include a cohort term, the latter

is fitted together with the period factor. However, the approach in [36] cannot be readily

applied into the ACF framework, as the multiple bilinear components of the ACF are

arranged in hierarchy, so that common trends are fitted prior to fitting individual

subpopulation trends. Therefore, the term gt�x;i would have to be placed within this

hierarchy and should be fitted after the term ax;i;j þ BxKt but before the bilinear term

bx;i;jjt;i;j, for the model to make sense. This is another key feature of the 2-tier ACFC:

including a cohort term still gives rise to a coherent forecast in terms of differences in

mortality among subpopulations, because the common trend of the entire population

is prioritised while the term gt�x;i is modelled as a stationary process. It may be argued

that a common gender cohort factor gt�x could be fitted, together with the bilinear

Fig. 11 Residual plots by cohort of the 1-tier ACF for females and males for the three countries of UK
combined
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term BxKt, so as to maintain the coherence property. However, the residual plots from

the 1-tier ACF suggests that cohort patterns do differ between different genders,

which is consistent with the findings in [40].

The approach used in this paper also fits bx;ijt;i prior to fitting gt�x;i, setting in this

way the priority of period factors over cohort factors. This is consistent with the

assumption that mortality depends more on the calendar year than on the year of

birth when fitting the idiosyncratic trend for each gender. Some research findings,

however, disagree with this assumption. In [37] it is suggested that, when fitting the

mortality rates of the elderly population in the UK, the cohort effect is more

prominent than the period effect. This may suggest alternative orderings when

fitting the different components of the ACFC model - one might choose to fit the

cohort factor gt�x;i prior to fitting any bilinear term bx;ijt;i, or at least to jointly fit

them in a single step when minimising the deviance function. [15] also suggest that

the order of model fitting in age-period-cohort models makes a huge difference to

parameter shapes. Further research may therefore be able to identify more elegant

ways of including the cohort extensions within the 2-tier ACF hierarchy.

It should also be noted that it only makes sense to extrapolate gt�x;i as stationary

process when ax;i;j þ BxKt þ bx;ijt;i is prioritised in the fitting process, as it is the

residuals after fitting these components that drive the shape of gt�x;i. The plots of

cohort factors produced by [41] are much more erratic compared to those in [36].

This is primarily because the PCFM, as used by [41], uses up to five sex-specific

bilinear terms to capture the trends of a gender departing from the overall combined

population, and if the whole PCFM model is fitted prior to fitting any cohort

extension, the residuals used to fit such cohort term are already very erratic.

However, since we impose that the term gt�x;i is fitted after the component ax;i;j þ
BxKt þ bx;ijt;i but before the term bx;i;jjt;i;j, the cohort factor turns out to be less

erratic (Figure 12) and easier to interpret. If the cohort factor shows a negative slope,

it means that mortality in that cohort is improving at a faster pace than implied by the

1-tier ACF model. One can easily spot in Figure 12 the golden generation of those

born between 1925 and 1945, especially for females, which is consistent with [40].

Another merit of the current approach is that it generally avoids the issues in the two

steps method adopted by [36] that the fitting algorithm may not converge for certain

combinations of data, parameters and identifiability constraints, which makes the

cohort factor harder to interpret, as is pointed out by [20].

The cohort factor is sometimes modelled as a non-stationary (integrated) process,

as by definition it should capture the structural changes in mortality patterns by

cohort. However, because the approach taken here prioritises the model fitting of

certain age and period terms, some cohort patterns may already be implicitly

captured, due to the simple fact that cohort is merely age netted off the calendar

year, and the cohort terms are intrinsically related to the prioritised age and period

terms. Nevertheless, whether the residual cohort effect represented by gt�x;i in the

ACFC models really represents structure trends in mortality and should be

extrapolated into the future using a stationary process are areas involving a lot of

subjective judgements. What we can conclude from the above analysis is that the

cohort factors fitted under this method display reasonable trends over time and can
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be easily interpreted, although the pattern gets more erratic in later cohorts (namely

after 1975); the cohort factors also improve the fitting of the model, evidenced by

the lower BIC and AIC.

4.2 Limitations of the 2-tier ACF/ACFC models.

Firstly, the method fundamentally belongs to the class of models described as

‘extrapolative’, so it can only capture trends well embedded in the historical data

and lack the ability to project more up-to-date information such as medical

progresses, environmental and social-economic changes such as, for example, the

increasing female participation in the workforce, see [18].

Secondly, the 2-tier ACF/ACFC models are extensions of the LC model. A major

issue of such class of models is that they neglect the existence of an age-time

interaction. More specifically, rates of mortality change bx, bx;i, and bx;i;j are assumed

to remain constant over time, whereas substantial age-time interactions have been

identified in actual experience, see [27]. This results in the fact that the models tend to

underestimate the life expectancy. In [7], a possible extension of the LC method

accounting for the changing age sensitivity to mortality improvement by applying the

LCmethod is proposed. This extension could be potentially applied to the 2-tier ACF/

ACFC models to consider the evolving pattern of age modulating terms.

Another issue of the 2-tier ACF framework is that it assumes homogeneity at

different levels. When the BxKt term is fitted, homogeneity is assumed for all lives

Fig. 12 Plots of the 2-tier ACFC parameters ax;i;j; Bx; Kt; bx;i; jt;i; bx;i;j; jt;i;j and gt�x;i for England &

Wales (i ¼ f or m, j ¼ EW)
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aged x in year t, but when bx;ijt;i is estimated, homogeneity is assumed for all lives

aged x in year t with the same gender, and the assumption is further relaxed when

the model is extended to the country dimension. It should be noted that homogeneity

assumptions were embedded in the basic LC model, and methods to build in

heterogeneity into the framework has been suggested by [31].

Throughout this research, we have proposed to fit, for simplicity purposes, an

AR(1) or random walk to all the mortality period indices, instead of other higher

order ARIMA models which may fit better past experience. Moreover, the mortality

indices in the model have been extrapolated independently. Despite the fact that jt;i
and jt;i;j may be correlated and a vector approach may further improve the model

forecasting, see for instance [21], each period index in the ACF/ACFC framework

represents a trend of a subpopulation that departs from the general trend of the

aggregated population, justifying therefore the independent extrapolation used in

the paper. Moreover, if a vector approach were considered, correlations among time

indices would have to be estimated, compromising the simplicity of the model.

Similarly, an AR(1) was chosen to the fit cohort terms in the 2-tier ACFC model,

which are then extrapolated independently. Although historically females and males

have displayed different cohort patterns in their mortality improvements, there

could be interactions between the cohort effects of the two genders, since inevitably

females and males born in the same year are exposed to similar social-economic

context and healthcare facilities. Therefore, a more sensible approach may consist in

fitting and extrapolating the cohort factors using a vector time series.

Most of the results considered in this paper are point estimates for future mortality

rates. Further research should look into the statistical errors of estimates, which are

primarily driven by standard errors of parameters in fitting the mortality time indices.

The 2-tierACF/ACFCmodel could be potentially extended to includemore tiers to form

coherent estimates in several dimensions, for instance taking into account regional

inequalities within each country. However, further divisionwithin each sex and country

means that the sample sizeof each subpopulationwould be smaller andmayproduce less

statistically significant results. Using a different perspective, one may wonder whether

the role played by the two factors used to disaggregatemortality improvements, namely

gender and country, could be interchanged, i.e. interpret i as the country index and j as

gender index. This reversed 2-tier ACF model would then fit a common bilinear term,

followed by a country specific term and finally a gender specific term within each

country. In the current example based on three countries of UK, the two alternatives are

bound to produce similar results, as both are rich enough to represent (implicitly or

explicitly) sex differences between countries and country differences within each sex.

The reverse ACF would only require one additional bilinear term. In a more general

example where I countries were to be modelled, the direct 2-tier ACF based on gender

first/country second will require 1þ 2ð1þ IÞ bilinear terms. The reversed 2-tier ACF

based on country first/gender secondwill need 1þ 3I bilinear terms. As the number of

countries I grows, the eventual benefit of adopting the reversed approach would be

overshadowed by the increased number of parameters to be estimated.

The 2-tier ACFC model can be improved in several directions. In particular, the

common age effect model introduced recently by [24] is worth mentioning. Unlike
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the common factor paradigm, under this approach different populations feature

different period trends but share some of the corresponding age modulating

parameters. The idea is that, while mortality improvements are free to vary between

subgroups, the corresponding age specific changes will be in common between the

same subgroups. This could be very convenient when some of the subgroups have

small exposures, negatively affecting the properties of the corresponding age

response term estimators. Inheriting the age terms from subgroups with larger size

will provide a relief against this issue, adding up to the overall benefit coming from

the reduction in the number of parameters. This approach has been taken up in [17]

in the context of basis risk assessment in longevity transfers, where the mortality of

(small) pension schemes relative to the national population needs to be assessed. In

the application considered in this paper, the 2-tier ACFC could be complemented by

letting some of the subgroups at gender/country level share the age response term

with other subgroups. This could help, for instance, in reducing the lack of

smoothness in some projections such as those of Northern Ireland as evidenced in

Figures 6,10. A similar idea has been pursued in [14], where the Li and Lee model is

simplified by restricting some of the age response terms, relative to the country

specific or to the overall period effects, to be equal.

5 Conclusions

We have extended the ACF model proposed by [32] to a 2-tier structure in order to

model subpopulations of different genders and countries jointly and coherently.

A Poisson structure similar to that in [28] is applied to introduce a robust statistical

framework for testing the accuracy of model fitting. The 2-tier ACF model fits better

the historical mortality experience of the six subpopulations than the independent

LC model and the independent Li and Lee models applied to each couple of genders

separately. For long-term projections, the 2-tier ACF model produces coherent

results for both gender difference within each country and country differences

within each gender. The 2-tier ACF model is also extended to the 2-tier ACFC by

including a cohort factor, which further improves model fitting, removes significant

patterns displayed in the plots of cohort residuals, and maintains the coherence

property in long-term projection.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

Appendix A: Estimation algorithm

The parameters of the 2-tier ACF and 2-tier ACFC models are obtained by

maximization of the log-likelihood (or minimization of the deviance), performed

using the Newton–Raphson updating rule
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h� ¼ h� o‘=oh

o2‘=oh2
;

where ‘ is the log-likelihood and h represents any parameter to be fitted. The log-

likelihood and deviance are defined by

‘ ¼
X

x;t;i;j

dx;t;i;j log bdx;t;i;j � bdx;t;i;j � logðdx;t;i;j!Þ
h i

deviance ¼
X

x;t;i;j

dx;t;i;j log
dx;t;i;j
bdx;t;i;j

� dx;t;i;j þ bdx;t;i;j

" #
:

Recall that dx;t;i;j denotes the observed number of death for age x, year t, gender i

and country j, and bdx;t;i;j ¼ Ex;t;i;jmx;t;i;j is the corresponding theoretical number of

deaths, where mx;t;i;j is given by either (4) or (9).

Adapting [3, 28], parameters are updated through the following stages and steps

(Fig. 13).

Fig. 13 Residual plots by age and year of the LC model applied to the three countries and genders of UK
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STAGE 0.

Step I. Initialise parameter values: bax;i;j as the mean of logmx;t;i;j over t for all

x, i and j, bKt ¼ bjt;i ¼ bkt;i;j ¼ 0, bBx ¼ bbx;i ¼ bbx;i;j ¼ 1=101 and gh;i ¼ 0 for all

t, x, i, j and h ¼ t � x.

STAGE 1. Fit bax;i;j þ bBx
bKt.

Step II. Update ba�x;i;j ¼ bax;i;j þ
P

tðdx;t;i;j � bdx;t;i;jÞ=
P

t
bdx;t;i;j for all x, i and j,

and recalculate bdx;t;i;j.
Step III. Update bK �

t ¼ bKt þ
P

x;i;jðdx;t;i;j � bdx;t;i;jÞ bBx=
P

x;i;j
bdx;t;i;j bB2

x for all t,

adjusted by the constraint
P

t Kt ¼ 0, and recalculate bdx;t;i;j.
Step IV. Update bB�

x ¼ bBx þ
P

t;i;jðdx;t;i;j � bdx;t;i;jÞ bKt=
P

t;i;j
bdx;t;i;j

bK 2

t for all x,

adjusted by the constraint
P

x Bx ¼ 1, and recalculate bdx;t;i;j.

Step V. Repeat Steps II to IV till the deviance converges.

STAGE 2. Conditional on Stage 1, fit bbx;ibjt;i.

Step VI. Update bj�
t;i ¼ bjt;i þ

P
x;jðdx;t;i;j � bdx;t;i;jÞ bbx;i=

P
x;j
bdx;t;i;j

bb
2

x;i for all t

and i, adjusted by the constraint
P

t jt;i ¼ 0, and recalculate bdx;t;i;j.
Step VII. Update bb

�
x;i ¼ bbx;i þ

P
t;jðdx;t;i;j � bdx;t;i;jÞ bjt;i=

P
t;j
bdx;t;i;j bj2

t;i for all x

and i, adjusted by the constraint
P

x bx;i ¼ 1, and recalculate bdx;t;i;j.
Step VIII. Repeat Steps VI to VII until the deviance converges.

STAGE 3. Conditional on Stages 1-2, fit bgh;i.
Step IX. Update

bg�h;i ¼ bgh;i þ
P

x;t;t�x¼h;j xx;tðdx;t;i;j � bdx;t;i;jÞ
P

x;t;t�x¼h;j xx;t
bdx;t;i;j

for all h and i, adjusted by the constraint
P

h¼t�x gh;i ¼ 0.4

Step X. Repeat Step IX until the deviance converges.

STAGE 4. Conditional on the Stages 1-3, fit bbx;i;jbjt;i;j.

Step XI. Update bj�
t;i;j ¼ bjt;i;j þ

P
xðdx;t;i;j � bdx;t;i;jÞ bbx;i;j=

P
x
bdx;t;i;j bb2x;i;j for all

t, i and j, adjusted by the constraint
P

t jt;i;j ¼ 0, and recalculate bdx;t;i;j.
Step XII. Update bb�x;i;j ¼ bbx;i;j þ

P
tðdx;t;i;j � bdx;t;i;jÞ bjt;i;j=

P
t
bdx;t;i;j bj2

t;i;j for all

x, i and j, and recalculate bdx;t;i;j.
Step XIII. Repeat Steps XI and XII until the deviance converges.

Stage 3 is skippedwhen fitting the 2-tier ACFmodel. The algorithm is designed in four

stages so that, for each bilinear component, the period mortality indices and age

4 When fitting the cohort terms, weights xx;t taking values 0 or 1 are added to zeroise cohorts for which

only few observations are available. In the present application, zero weight was assigned to the five

youngest and oldest cohorts.
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sensitivities are fitted in a way that best explains the overall trend of an aggregated

population, leaving any trends specific to a subpopulation to the next stage of the model

fitting. This also ensures the convergence of the model under the stated identifiability

constraints.

Appendix B: Residuals by age and calendar year

See Figs. 14, 15 and 16.

Fig. 14 Residual plots by age and year of the 1-tier ACF model applied to each couple of genders within
the three countries of UK
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Fig. 15 Residual plots by age and year of the 2-tier ACF model applied to the three countries of UK

Fig. 16 Residual plots by age and year of the 2-tier ACFC model applied to the three countries of UK
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