715 research outputs found

    Design and Tests of the Silicon Sensors for the ZEUS Micro Vertex Detector

    Get PDF
    To fully exploit the HERA-II upgrade,the ZEUS experiment has installed a Micro Vertex Detector (MVD) using n-type, single-sided, silicon micro-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 micrometers, with five intermediate strips (20 micrometer strip pitch). The designs of the silicon sensors and of the test structures used to verify the technological parameters, are presented. Results on the electrical measurements are discussed. A total of 1123 sensors with three different geometries have been produced by Hamamatsu Photonics K.K. Irradiation tests with reactor neutrons and Co-60 photons have been performed for a small sample of sensors. The results on neutron irradiation (with a fluence of 1 x 10^{13} 1 MeV equivalent neutrons / cm^2) are well described by empirical formulae for bulk damage. The Co-60 photons (with doses up to 2.9 kGy) show the presence of generation currents in the SiO_2-Si interface, a large shift of the flatband voltage and a decrease of the hole mobility.Comment: 33 pages, 25 figures, 3 tables, accepted for publication in NIM

    Aspects of Axion Phenomenology in a slice of AdS_5

    Get PDF
    Motivated by multi-throat considerations, we study the phenomenological implications of a bulk axion in a slice of AdS_5 with a large extra dimension: k~0.01 eV, kR > 1. In particular, we compare axion physics with a warped geometry to axions in flat compactifications. As in flat compactification scenarios, we find that the mass of the axion can become independent from the underlying Peccei-Quinn scale. Surprisingly, we find that in warped extra dimensions the axion's invisibility, cosmological viability, and basic phenomenology remain essentially unaltered in comparison to axions in flat compactifications.Comment: 25 pages, 9 figure

    Beam Test of Silicon Strip Sensors for the ZEUS Micro Vertex Detector

    Get PDF
    For the HERA upgrade, the ZEUS experiment has designed and installed a high precision Micro Vertex Detector (MVD) using single sided micro-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 microns, with five intermediate strips (20 micron strip pitch). An extensive test program has been carried out at the DESY-II testbeam facility. In this paper we describe the setup developed to test the ZEUS MVD sensors and the results obtained on both irradiated and non-irradiated single sided micro-strip detectors with rectangular and trapezoidal geometries. The performances of the sensors coupled to the readout electronics (HELIX chip, version 2.2) have been studied in detail, achieving a good description by a Monte Carlo simulation. Measurements of the position resolution as a function of the angle of incidence are presented, focusing in particular on the comparison between standard and newly developed reconstruction algorithms.Comment: 41 pages, 21 figures, 2 tables, accepted for publication in NIM

    High Resolution Hybrid Pixel Sensors for the e+e- TESLA Linear Collider Vertex Tracker

    Get PDF
    In order to fully exploit the physics potential of a future high energy e+e- linear collider, a Vertex Tracker, providing high resolution track reconstruction, is required. Hybrid Silicon pixel sensors are an attractive option, for the sensor technology, due to their read-out speed and radiation hardness, favoured in the high rate environment of the TESLA e+e- linear collider design but have been so far limited by the achievable single point space resolution. In this paper, a conceptual design of the TESLA Vertex Tracker, based on a novel layout of hybrid pixel sensors with interleaved cells to improve their spatial resolution, is presented.Comment: 12 pages, 5 figures, to appear in the Proceedings of the Vertex99 Workshop, Texel (The Netherlands), June 199

    SCTA - A Rad-Hard BiCMOS Analogue Readout ASIC for the ATLAS Semiconductor Tracker

    Get PDF
    Two prototype chips for the analogue readout of silicon strip detectors in the ATLAS Semiconductor Tracker (SCT) have been designed and manufactured, in 32 channels and 128 channel versions, using the radiation hard BiCMOS DMILL process. The SCTA chip comprises three basic blocks: front-end amplifier, analogue pipeline and output multiplexer. The front-end circuit is a fast transresistance amplifier followed by an integrator, providing fast shaping with a peaking time of 25 ns, and an output buffer. The front end output values are sampled at 40 MHz rate and stored in a 112-cell deep analogue pipeline. The delay between the write pointer and trigger pointer is tunable between 2 ms and 2.5 ms. The chip has been tested successfully and subsequently irradiated up to 10 Mrad. Full functionality of all blocks of the chip has been achieved at a clock frequency of 40 MHz both before and after irradiation. Noise figures of ENC = 720 e- + 33 e-/pF before irradiation and 840 e- + 33 e-/pF after irradiation have been obtained

    The Presampler for the Forward and Rear Calorimeter in the ZEUS Detector

    Get PDF
    The ZEUS detector at HERA has been supplemented with a presampler detector in front of the forward and rear calorimeters. It consists of a segmented scintillator array read out with wavelength-shifting fibers. We discuss its desi gn, construction and performance. Test beam data obtained with a prototype presampler and the ZEUS prototype calorimeter demonstrate the main function of this detector, i.e. the correction for the energy lost by an electron interacting in inactive material in front of the calorimeter.Comment: 20 pages including 16 figure

    A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes

    Get PDF
    This work compares two electrode materials used to mineralize phenol contained in waste waters. Two disks covered with either boron doped diamond (BDD) or PbO2 were used as anodes in a one compartment flow cell under the same hydrodynamic conditions. Efficiencies of galvanostatic electrolyses are compared on the basis of measurements of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD). Galvanostatic electrolyses were monitored by analysis of phenol and of its oxidation derivatives to evaluate the operating time needed for complete elimination of toxic aromatics. The experimental current efficiency is close to the theoretical value for the BDD electrode. Other parameters being equal, phenol species disappeared at the same rate using the two electrode materials but the BDD anode showed better efficiency to eliminate TOC and COD. Moreover, during the electrolysis less intermediates are formed with BDD compared to PbO2 whatever the current density. A comparison of energy consumption is given based on the criterion of 99% removal of aromatic compounds

    Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    Get PDF
    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 ??C with record-high surface area (4073 m2 g-1), large pore volume (2.26 cm-3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium-sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.clos
    corecore