506 research outputs found

    Phase synchrony facilitates binding and segmentation of natural images in a coupled neural oscillator network

    Get PDF
    Synchronization has been suggested as a mechanism of binding distributed feature representations facilitating segmentation of visual stimuli. Here we investigate this concept based on unsupervised learning using natural visual stimuli. We simulate dual-variable neural oscillators with separate activation and phase variables. The binding of a set of neurons is coded by synchronized phase variables. The network of tangential synchronizing connections learned from the induced activations exhibits small-world properties and allows binding even over larger distances. We evaluate the resulting dynamic phase maps using segmentation masks labeled by human experts. Our simulation results show a continuously increasing phase synchrony between neurons within the labeled segmentation masks. The evaluation of the network dynamics shows that the synchrony between network nodes establishes a relational coding of the natural image inputs. This demonstrates that the concept of binding by synchrony is applicable in the context of unsupervised learning using natural visual stimuli

    Principles of RAFOS technology at the Institut fĂŒr Meereskunde Kiel

    Get PDF

    A new approach for improving coronary plaque component analysis based on intravascular ultrasound images

    Get PDF
    Virtual histology intravascular ultrasound (VH-IVUS) is a clinically available technique for atherosclerosis plaque characterization. It, however, suffers from a poor longitudinal resolution due to electrocardiogram (ECG)-gated acquisition. This article presents an effective algorithm for IVUS image-based histology to overcome this limitation. After plaque area extraction within an input IVUS image, a textural analysis procedure consisting of feature extraction and classification steps is proposed. The pixels of the extracted plaque area excluding the shadow region were classified into one of the three plaque components of fibro-fatty (FF), calcification (CA) or necrotic core (NC) tissues. The average classification accuracy for pixel and region based validations is 75% and 87% respectively. Sensitivities (specificities) were 79% (85%) for CA, 81% (90%) for FF and 52% (82%) for NC. The kappa (kappa) = 0.61 and p value = 0.02 indicate good agreement of the proposed method with VH images. Finally, the enhancement in the longitudinal resolution was evaluated by reconstructing the IVUS images between the two sequential IVUS-VH images

    Species–area relationships on small islands differ among plant growth forms

    Get PDF
    Aim: We tested whether species–area relationships of small islands differ among plant growth forms and whether this influences the prevalence of the small-island effect (SIE). The SIE states that species richness on small islands is independent of island area or relates to area in a different way compared with larger islands. We investigated whether island isolation affects the limits of the SIE and which environmental factors drive species richness on small islands. Location: Seven hundred islands (< 100 km2) worldwide belonging to 17 archipelagos. Major taxa studied: Angiosperms. Methods: We applied linear and breakpoint species–area models for angiosperm species richness and for herb, shrub and tree species richness per archipelago separately, to test for the existence of SIEs. For archipelagos featuring the SIE, we calculated the island area at which the breakpoints occurred (breakpoint area) and used linear models to test whether the breakpoint areas varied with isolation. We used linear mixed-effect models to discern the effects of seven environmental variables related to island area, isolation and other environmental factors on the species richness of each growth form for islands smaller than the breakpoint area. Results: For 71% of all archipelagos, we found an SIE for total and herb species richness, and for 59% for shrub species richness and 53% for tree species richness. Shrub and tree species richness showed larger breakpoint areas than total and herb species richness. The breakpoint area was significantly positively affected by the isolation of islands within an archipelago for total and shrub species richness. Species richness on islands within the range of the SIE was differentially affected by environmental factors across growth forms. Main conclusion: The SIE is a widespread phenomenon that is more complex than generally described. Different functional groups have different environmental requirements that shape their biogeographical patterns and affect species–area and, more generally, richness–environment relationships. The complexity of these patterns cannot be revealed when measuring overall plant species richness.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Studienstiftung des Deutschen Volkes http://dx.doi.org/10.13039/501100004350Peer Reviewe

    Refraction of Sound by Islands and Seamounts

    Get PDF
    We consider the propagation into shallow water of low-frequency and low-order acoustic modes trapped in the sound channel. The phase velocity slightly decreases and then increases with decreasing depth. This leads to an unusual pattern of wave refraction. Waves are “attracted” by islands and seamounts (rays turn toward shore) in “almost deep” water, and then are strongly “repelled” in shallow water. We examine the relative intensity of scattered arrivals in very long-range ocean transmissions. Forward scatter by islands and seamounts can give significant (order −10 dB) scattered arrivals, as can large-angle scatter (including backscatter) by large islands and by islands near the source or receiver. However, transmission of acoustic energy into the sea floor leads to loss of the scattered energy in the sound channel. Total reflection (no loss) is favored by glancing incidence on steep slopes of islands and seamounts with large compressional seismic velocities. We suggest a complementary relation between the intensities from an underwater explosion as recorded on axial hydrophones versus nearby land seismometers, with conditions favorable to reflection favoring hydrophones and vice versa. A preliminary attempt is made to compare measured and computed scattered intensities in the sound channel for operation WIGWAM (a deep-water nuclear explosion in 1955), operation CHASE, and the Perth to Bermuda transmission of 1960. Computed intensities are too low

    Evaluation des ArbeitnehmerĂŒberlassungsgesetzes (AÜG): Endbericht zum Forschungsvorhaben

    Full text link
    Der Forschungsbericht dokumentiert die Ergebnisse der Evaluation des zum April 2017 weiterentwickelten ArbeitnehmerĂŒberlassungsgesetzes (AÜG). Die Evaluation des Gesetzes hatte zum Ziel Umsetzung und Wirksamkeit der damaligen Neuregelungen auf Grundlage wissenschaftlicher Daten und Methoden zu untersuchen. Dabei lag der Schwerpunkt der Untersuchung auf dem mit der Gesetzesreform verfolgten Ziel, die Leiharbeit auf ihre Kernfunktion zu fokussieren. Gleichzeitig sollten das Grundprinzip "Faire Bezahlung fĂŒr gute Arbeit" und die Sozialpartnerschaft in Deutschland gestĂ€rkt werden. Im Fokus der Untersuchung standen hierbei die Neuregelungen zur Überlassungshöchstdauer sowie die Regelungen zu Equal Pay und den Abweichungsmöglichkeiten hiervon. Ebenfalls umfassend betrachtet wurden die Offenlegungs-, Konkretisierungs- und Informationspflicht sowie die StĂ€rkung der Tarifautonomie, das Streikbrecherverbot, die Regelungen zur Mitbestimmung und die FesthaltenserklĂ€rung

    A time travel through nematology in Germany – From the beginnings to the use of artificial intelligence

    Get PDF
    Das Nachrichtenblatt fĂŒr den Deutschen Pflanzenschutzdienst, unser heutiges Journal fĂŒr Kulturpflanzen, feiert seinen 100. Geburtstag. Seinem Ziel, „den im praktischen Pflanzenschutzdienst TĂ€tigen Belehrung und Informationen (zu) ĂŒbermitteln“, wie Otto Appel zur EinfĂŒhrung schrieb, ist es bis heute treu geblieben. Dies gilt auch fĂŒr den Bereich der Nematologie. Die Themen haben sich dabei ĂŒber die Zeit weiterentwickelt. Standen frĂŒher Biologie und Wirtspflanzenspektrum einzelner Arten pflanzenparasitĂ€rer Nematoden im Fokus des Interesses, so sind es heute Wirt-Parasit Interaktionen, Resistenz und Toleranz von Kulturpflanzen oder der Einfluss von Klimawandel und Globalisierung auf die Verbreitung und das Schadpotenzial der Nematoden. Der vorliegende Beitrag blickt zurĂŒck auf die Themen vor 100 Jahren, stellt am Beispiel laufender Arbeiten am Julius KĂŒhn-Institut aktuelle Forschungsthemen vor und gibt einen Ausblick auf die Themen der Zukunft.The Nachrichtenblatt fĂŒr den Deutschen Pflanzenschutzdienst, today's Journal of Cultivated Plants, celebrates its 100th birthday. It has remained true to its goal of “providing instruc­tion and information to those involved in the practical plant protection service” to this day as stated in its first issue by Otto Appel. This also applies to the field of nematology. The topics have expanded over time and developed further on an international level. While the main focus was initially on the biology and host plant spectrum of the various nematode species, today it is on host-parasite interactions, resistance and tolerance of cultivated plants and the influence of climate change and globalization on the distribution and harmful effects of nematodes. The present article looks back at the topics 100 years ago, presents current research topics using the example of ongoing work at the Julius KĂŒhn Institute and provides an outlook on the topics of the future

    The life of plant mitochondrial complex I

    Get PDF
    The mitochondrial NADH dehydrogenase complex (complex I) of the respiratory chain has several remarkable features in plants: (i) particularly many of its subunits are encoded by the mitochondrial genome, (ii) its mitochondrial transcripts undergo extensive maturation processes (e.g. RNA editing, trans-splicing), (iii) its assembly follows unique routes, (iv) it includes an additional functional domain which contains carbonic anhydrases and (v) it is, indirectly, involved in photosynthesis. Comprising about 50 distinct protein subunits, complex I of plants is very large. However, an even larger number of proteins are required to synthesize these subunits and assemble the enzyme complex. This review aims to follow the complete "life cycle" of plant complex I from various molecular perspectives. We provide arguments that complex I represents an ideal model system for studying the interplay of respiration and photosynthesis, the cooperation of mitochondria and the nucleus during organelle biogenesis and the evolution of the mitochondrial oxidative phosphorylation system. © 2014 Elsevier B.V

    Vasor: Accurate prediction of variant effects for amino acid substitutions in multidrug resistance protein 3

    Get PDF
    The phosphatidylcholine floppase multidrug resistance protein 3 (MDR3) is an essential hepatobiliary transport protein. MDR3 dysfunction is associated with various liver diseases, ranging from severe progressive familial intrahepatic cholestasis to transient forms of intrahepatic cholestasis of pregnancy and familial gallstone disease. Single amino acid substitutions are often found as causative of dysfunction, but identifying the substitution effect in in vitro studies is time and cost intensive. We developed variant assessor of MDR3 (Vasor), a machine learning‐based model to classify novel MDR3 missense variants into the categories benign or pathogenic. Vasor was trained on the largest data set to date that is specific for benign and pathogenic variants of MDR3 and uses general predictors, namely Evolutionary Models of Variant Effects (EVE), EVmutation, PolyPhen‐2, I‐Mutant2.0, MUpro, MAESTRO, and PON‐P2 along with other variant properties, such as half‐sphere exposure and posttranslational modification site, as input. Vasor consistently outperformed the integrated general predictors and the external prediction tool MutPred2, leading to the current best prediction performance for MDR3 single‐site missense variants (on an external test set: F1‐score, 0.90; Matthew's correlation coefficient, 0.80). Furthermore, Vasor predictions cover the entire sequence space of MDR3. Vasor is accessible as a webserver at https://cpclab.uni‐duesseldorf.de/mdr3_predictor/ for users to rapidly obtain prediction results and a visualization of the substitution site within the MDR3 structure. The MDR3‐specific prediction tool Vasor can provide reliable predictions of single‐site amino acid substitutions, giving users a fast way to initially assess whether a variant is benign or pathogenic
    • 

    corecore