24 research outputs found

    AKT1 (E17K) mutation profiling in breast cancer: prevalence, concurrent oncogenic alterations, and blood-based detection.

    Get PDF
    BACKGROUND: The single hotspot mutation AKT1 [G49A:E17K] has been described in several cancers, with the highest incidence observed in breast cancer. However, its precise role in disease etiology remains unknown. METHODS: We analyzed more than 600 breast cancer tumor samples and circulating tumor DNA for AKT1 (E17K) and alterations in other cancer-associated genes using Beads, Emulsions, Amplification, and Magnetics digital polymerase chain reaction technology and targeted exome sequencing. RESULTS: Overall AKT1 (E17K) mutation prevalence was 6.3 % and not correlated with age or menopausal stage. AKT1 (E17K) mutation frequency tended to be lower in patients with grade 3 disease (1.9 %) compared with those with grade 1 (11.1 %) or grade 2 (6 %) disease. In two cohorts of patients with advanced metastatic disease, 98.0 % (n = 50) and 97.1 % (n = 35) concordance was obtained between tissue and blood samples for the AKT1 (E17K) mutation, and mutation capture rates of 66.7 % (2/3) and 85.7 % (6/7) in blood versus tissue samples were observed. Although AKT1-mutant tumor specimens were often found to harbor concurrent alterations in other driver genes, a subset of specimens harboring AKT1 (E17K) as the only known driver alteration was also identified. Initial follow-up survival data suggest that AKT1 (E17K) could be associated with increased mortality. These findings warrant additional long-term follow-up. CONCLUSIONS: The data suggest that AKT1 (E17K) is the most likely disease driver in certain breast cancer patients. Blood-based mutation detection is achievable in advanced-stage disease. These findings underpin the need for a further enhanced-precision medicine paradigm in the treatment of breast cancer

    Molecular mechanism underlying the impact of vitamin D on disease activity of MS

    Get PDF
    Objective: Some previous studies suggest modest to strong effects of 25-hydroxyvitamin D (25(OH)D) on multiple sclerosis (MS) activity. The objective of this study was to explore the mechanistic rationale that may explain potential clinical effects of 25(OH)D. Methods: This study measured serum 25(OH)D levels and global gene expression profiles over a course of up to 2 years in patients starting treatment with interferon beta-1b (IFNB-1b) after a clinically isolated syndrome. MS disease activity was assessed by the number of gadolinium-enhancing lesions present on repeated magnetic resonance imaging (MRIs). Results: The number of gadolinium-enhancing lesions was highly significantly associated with 25(OH)D levels. Conducting various systems-level analyses on the molecular level, multiple lines of evidence indicated that 25(OH)D regulates expression dynamics of a large gene–gene interaction system which primarily regulates immune modulatory processes modulating MS activity. The vitamin D response element was significantly enriched in this system, indicating a direct regulation of this gene interaction network through the vitamin D receptor. With increasing 25(OH)D levels, resulting regulation of this system was associated with a decrease in MS activity. Within the complex network of genes that are regulated by 25(OH)D, well-described targets of IFNB-1b and a regulator of sphingosine-1-phosphate bioavailability were found. The 25(OH)D effects on MS activity were additively enhanced by IFNB-1b. Interpretation Here, we provide mechanistic evidence that an unbalanced 25(OH)D gene expression system may affect MS activity. Our findings support a potential benefit of monitoring and managing vitamin D levels (e.g., through supplementation) in early MS patients treated with IFN-beta-1b

    Aberrant Expression of and Cell Death Induction by Engagement of the MHC-II Chaperone CD74 in Anaplastic Large Cell Lymphoma (ALCL)

    Get PDF
    SIMPLE SUMMARY: Anaplastic large cell lymphoma (ALCL) is a lymphoid malignancy considered to be derived from T cells. Currently, two types of systemic ALCL are distinguished: anaplastic lymphoma kinase (ALK)-positive and ALK-negative ALCL. Although ALK(+) and ALK(−) ALCL differ at the genomic and molecular levels, various key biological and molecular features are highly similar between both entities. We have developed the concept that both ALCL entities share a common principle of pathogenesis. In support of this concept, we here describe a common deregulation of CD74, which is usually not expressed in T cells, in ALCL. Ligation of CD74 induces cell death of ALCL cells in various conditions, and an anti-CD74-directed antibody-drug conjugate efficiently kills ALCL cell lines. Furthermore, we reveal expression of the proto-oncogene and known CD74 interaction partner MET in a fraction of ALCL cases. These data give insights into ALCL pathogenesis and might help to develop new treatment strategies for ALCL. ABSTRACT: In 50–60% of cases, systemic anaplastic large cell lymphoma (ALCL) is characterized by the t(2;5)(p23;q35) or one of its variants, considered to be causative for anaplastic lymphoma kinase (ALK)-positive (ALK(+)) ALCL. Key pathogenic events in ALK-negative (ALK(−)) ALCL are less well defined. We have previously shown that deregulation of oncogenic genes surrounding the chromosomal breakpoints on 2p and 5q is a unifying feature of both ALK(+) and ALK(−) ALCL and predisposes for occurrence of t(2;5). Here, we report that the invariant chain of the MHC-II complex CD74 or li, which is encoded on 5q32, can act as signaling molecule, and whose expression in lymphoid cells is usually restricted to B cells, is aberrantly expressed in T cell-derived ALCL. Accordingly, ALCL shows an altered DNA methylation pattern of the CD74 locus compared to benign T cells. Functionally, CD74 ligation induces cell death of ALCL cells. Furthermore, CD74 engagement enhances the cytotoxic effects of conventional chemotherapeutics in ALCL cell lines, as well as the action of the ALK-inhibitor crizotinib in ALK(+) ALCL or of CD95 death-receptor signaling in ALK(−) ALCL. Additionally, a subset of ALCL cases expresses the proto-oncogene MET, which can form signaling complexes together with CD74. Finally, we demonstrate that the CD74-targeting antibody-drug conjugate STRO-001 efficiently and specifically kills CD74-positive ALCL cell lines in vitro. Taken together, these findings enabled us to demonstrate aberrant CD74-expression in ALCL cells, which might serve as tool for the development of new treatment strategies for this lymphoma entity

    Genomic loss of the putative tumor suppressor gene E2A in human lymphoma

    Get PDF
    The transcription factor E2A is essential for lymphocyte development. In this study, we describe a recurrent E2A gene deletion in at least 70% of patients with SĂ©zary syndrome (SS), a subtype of T cell lymphoma. Loss of E2A results in enhanced proliferation and cell cycle progression via derepression of the protooncogene MYC and the cell cycle regulator CDK6. Furthermore, by examining the gene expression profile of SS cells after restoration of E2A expression, we identify several E2A-regulated genes that interfere with oncogenic signaling pathways, including the Ras pathway. Several of these genes are down-regulated or lost in primary SS tumor cells. These data demonstrate a tumor suppressor function of E2A in human lymphoid cells and could help to develop new treatment strategies for human lymphomas with altered E2A activity

    From high-dimensional data to disease mechanisms

    Get PDF
    Die aberrante Aktivierung des NOTCH Signalweges trĂ€gt entscheidend zu verschiedensten malignen Erkrankungen im Menschen bei. Basierend auf der Analyse von hochdimensionalen Microarray-DatensĂ€tzen von klassischen Hodgkin Lymphoma FĂ€llen und nicht-Hodgkin FĂ€llen, haben wir eine Hodgkin Lymphoma-spezifische NOTCH Signatur identifiziert. Diese wird von dem essentiellen NOTCH-Koaktivator Mastermindlike 2 (MAML2) signifikant dominiert. Auf der Grundlage dieses Resultates haben wir die Rolle von MAML2 im Kontext des Hodgkin Lymphoma-spezifischen, aberrant regulierten NOTCH Signalweges weiter untersucht. Die signifikante Überexpression von MAML2 im Hodgkin Lymphom konnte in verschiedenen Hodgkin Lymphom Zelllinien und auch durch die immunhistochemische Analyse von primĂ€ren Hodgkin Lymphom FĂ€llen verifiziert werden. Mit Hilfe des Knockdowns von MAML2 bzw. der Inhibition des NOTCH Signalweges durch die Verwendung einer kompetitiv, dominant-negativ wirkenden, trunkierten Variante von MAML1 konnte daraufhin gezeigt werden, dass die Überexpression von MAML2 der limitierende Faktor fĂŒr die Hodgkin Lymphomaspezifische, pathologische Deregulation des NOTCH Signalweges ist. Die MAML2- vermittelte Überaktivierung des NOTCH Signalweges ist darĂŒber hinaus essentiell fĂŒr die Proliferation von Hodgkin Lymphom Zelllinien und die aberrante Expression der NOTCH Zielgene HES7 und HEY1. Das konstitutive Vorhandensein von aktiviertem, intrazellulĂ€ren NOTCH1 in Hodgkin Lymphom Zelllinien impliziert darĂŒber hinaus,dass der Signalweg im Hodgkin Lymphom zellautonom aktiviert ist. In dieser Arbeit wird damit ein neuer, pathologisch hochwirksamer Mechanismus der NOTCH Signalweg-Deregulation aufgedeckt.Inappropriate activation of the NOTCH signaling pathway, e.g. by activating mutations, contributes to the pathogenesis of various human malignancies. Using a bottom up approach based on the acquisition of high–dimensional microarray data of classical Hodgkin lymphoma (cHL) and non-Hodgkin B cell lymphomas as control, we identify a cHL specific NOTCH gene-expression signature dominated by the NOTCH co-activator Mastermind-like 2 (MAML2). This set the basis for demonstrating that aberrant expression of the essential NOTCH co-activator MAML2 provides an alternative mechanism to activate NOTCH signaling in human lymphoma cells. Using immunohistochemistry we detected high-level MAML2 expression in several B cell-derived lymphoma types, including cHL cells, whereas in normal B cells no staining for MAML2 was detectable. Inhibition of MAML protein activity by a dominant negative form of MAML or by shRNAs targeting MAML2 in cHL cells resulted in down-regulation of the NOTCH target genes HES7 and HEY1, which we identified as overexpressed in cHL cells, and in reduced proliferation. In order to target the NOTCH transcriptional complex directly we developed short peptide constructs that competitively inhibit NOTCH dependent transcriptional activity as demonstrated by NOTCH reporter assays and EMSA analyses. We conclude that NOTCH signaling is aberrantly activated in a cell autonomous manner in cHL. This is mediated by high-level expression of the essential NOTCH coactivator MAML2, a protein that is only weakly expressed in B cells from healthy donors. Using short peptide constructs we moreover show, that this approach is promising in regard to the development of NOTCH pathway inhibitors that will also work in NOTCH associated malignancies that are resistant to -secretase inhibition

    Canonical NF-ÎșB signaling is uniquely required for the long-term persistence of functional mature B cells

    No full text
    Although canonical NF-ÎșB signaling is crucial to generate a normal mature B-cell compartment, its role in the persistence of resting mature B cells is controversial. To resolve this conflict, we ablated NF-ÎșB essential modulator (NEMO) and IÎșB kinase 2 (IKK2), two essential mediators of the canonical pathway, either early on in B-cell development or specifically in mature B cells. Early ablation severely inhibited the generation of all mature B-cell subsets, but follicular B-cell numbers could be largely rescued by ectopic expression of B-cell lymphoma 2 (Bcl2), despite a persisting block at the transitional stage. Marginal zone (MZ) B and B1 cells were not rescued, indicating a possible role of canonical NF-ÎșB signals beyond the control of cell survival in these subsets. When canonical NF-ÎșB signaling was ablated specifically in mature B cells, the differentiation and/or persistence of MZ B cells was still abrogated, but follicular B-cell numbers were only mildly affected. However, the mutant cells exhibited increased turnover as well as functional deficiencies upon activation, suggesting that canonical NF-ÎșB signals contribute to their long-term persistence and functional fitness

    An Oncogenic Role for Alternative NF-ÎșB Signaling in DLBCL Revealed upon Deregulated BCL6 Expression

    Get PDF
    Diffuse large B cell lymphoma (DLBCL) is a complex disease comprising diverse subtypes and genetic profiles. Possibly because of the prevalence of genetic alterations activating canonical NF-ÎșB activity, a role for oncogenic lesions that activate the alternative NF-ÎșB pathway in DLBCL has remained elusive. Here, we show that deletion/mutation of TRAF3, a negative regulator of the alternative NF-ÎșB pathway, occurs in ∌15% of DLBCLs and that it often coexists with BCL6 translocation, which prevents terminal B cell differentiation. Accordingly, in a mouse model constitutive activation of the alternative NF-ÎșB pathway cooperates with BCL6 deregulation in DLBCL development. This work demonstrates a key oncogenic role for the alternative NF-ÎșB pathway in DLBCL development
    corecore