31 research outputs found

    Amyloid myopathy: a diagnostic challenge

    Get PDF
    Amyloid myopathy (AM) is a rare manifestation of primary systemic amyloidosis (AL). Like inflammatory myopathies, it presents with proximal muscle weakness and an increased creatine kinase level. We describe a case of AL with severe, rapidly progressive myopathy as the initial symptom. The clinical manifestation and muscle biopsy were suggestive of inclusion body myositis. AM was not suspected until amyloidosis was seen in the gastric mucosal biopsy. The muscle biopsy was then re-examined more specifically, and Congo red staining eventually showed vascular and interstitial amyloid accumulation, which led to a diagnosis of AM. The present case illustrates the fact that the clinical picture of AM can mimic that of inclusion body myositis

    Consistent centennial-scale change in European sub-Arctic peatland vegetation towards Sphagnum dominance – implications for carbon sink capacity

    Get PDF
    Abstract Climate warming is leading to permafrost thaw in northern peatlands, and current predictions suggest that thawing will drive greater surface wetness and an increase in methane emissions. Hydrology largely drives peatland vegetation composition, which is a key element in peatland functioning and thus in carbon dynamics. These processes are expected to change. Peatland carbon accumulation is determined by the balance between plant production and peat decomposition. But both processes are expected to accelerate in northern peatlands due to warming, leading to uncertainty in future peatland carbon budgets. Here, we compile a dataset of vegetation changes and apparent carbon accumulation data reconstructed from 33 peat cores collected from 16 sub-arctic peatlands in Fennoscandia and European Russia. The data cover the past two millennia that has undergone prominent changes in climate and a notable increase in annual temperatures towards present times. We show a pattern where European sub-Arctic peatland microhabitats have undergone a habitat change where currently drier habitats dominated by Sphagnum mosses replaced wetter sedge-dominated vegetation and these new habitats have remained relatively stable over the recent decades. Our results suggest an alternative future pathway where sub-arctic peatlands may at least partly sustain dry vegetation and enhance the carbon sink capacity of northern peatlands.Peer reviewe

    POLG1 p.R722H mutation associated with multiple mtDNA deletions and a neurological phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The c.2447G>A (p.R722H) mutation in the gene <it>POLG1 </it>of the catalytic subunit of human mitochondrial polymerase gamma has been previously found in a few occasions but its pathogenicity has remained uncertain. We set out to ascertain its contribution to neuromuscular disease.</p> <p>Methods</p> <p>Probands from two families with probable mitochondrial disease were examined clinically, muscle and buccal epithelial DNA were analyzed for mtDNA deletions, and the <it>POLG1, POLG2, ANT1 </it>and <it>Twinkle </it>genes were sequenced.</p> <p>Results</p> <p>An adult proband presented with progressive external ophthalmoplegia, sensorineural hearing impairment, diabetes mellitus, dysphagia, a limb myopathy and dementia. Brain MRI showed central and cortical atrophy, and <sup>18</sup>F-deoxyglucose PET revealed reduced glucose uptake. Histochemical analysis of muscle disclosed ragged red fibers and cytochrome c oxidase-negative fibers. Electron microscopy showed subsarcolemmal aggregates of morphologically normal mitochondria. Multiple mtDNA deletions were found in the muscle, and sequencing of the <it>POLG1 </it>gene revealed a homozygous c.2447G>A (p.R722H) mutation. His two siblings were also homozygous with respect to the p.R722H mutation and presented with dementia and sensorineural hearing impairment. In another family the p.R722H mutation was found as compound heterozygosity with the common p.W748S mutation in two siblings with mental retardation, ptosis, epilepsy and psychiatric symptoms. The estimated carrier frequency of the p.R722H mutation was 1:135 in the Finnish population. No mutations in <it>POLG2</it>, <it>ANT1 </it>and <it>Twinkle </it>genes were found. Analysis of the POLG1 sequence by homology modeling supported the notion that the p.R722H mutation is pathogenic.</p> <p>Conclusions</p> <p>The recessive c.2447G>A (p.R722H) mutation in the linker region of the <it>POLG1 </it>gene is pathogenic for multiple mtDNA deletions in muscle and is associated with a late-onset neurological phenotype as a homozygous state. The onset of the disease can be earlier in compound heterozygotes.</p

    Reduced Cancer Incidence in Huntington's Disease: Analysis in the Registry Study

    Get PDF
    Background: People with Huntington’s disease (HD) have been observed to have lower rates of cancers. Objective: To investigate the relationship between age of onset of HD, CAG repeat length, and cancer diagnosis. Methods: Data were obtained from the European Huntington’s disease network REGISTRY study for 6540 subjects. Population cancer incidence was ascertained from the GLOBOCAN database to obtain standardised incidence ratios of cancers in the REGISTRY subjects. Results: 173/6528 HD REGISTRY subjects had had a cancer diagnosis. The age-standardised incidence rate of all cancers in the REGISTRY HD population was 0.26 (CI 0.22–0.30). Individual cancers showed a lower age-standardised incidence rate compared with the control population with prostate and colorectal cancers showing the lowest rates. There was no effect of CAG length on the likelihood of cancer, but a cancer diagnosis within the last year was associated with a greatly increased rate of HD onset (Hazard Ratio 18.94, p < 0.001). Conclusions: Cancer is less common than expected in the HD population, confirming previous reports. However, this does not appear to be related to CAG length in HTT. A recent diagnosis of cancer increases the risk of HD onset at any age, likely due to increased investigation following a cancer diagnosis

    The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients

    Get PDF
    The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis

    Myopathy and peripheral neuropathy associated with the 3243A>G mutation in mitochondrial DNA

    No full text
    Abstract Neurological features are common in mitochondrial diseases because tissues depending upon oxidative phosphorylation bear the brunt of the pathogenesis. The 3243A>G mutation in the MTTL1 gene in mitochondrial DNA is regarded as the most frequent mitchondrial point mutation and classically presents with mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Myopathy and peripheral neuropathy have been documented in patients with mitochondrial diseases, but not properly characterised in patients with the 3243A>G mutation. We have previously determined the prevalence of patients with this mutation in a defined population in northern Finland. The clinical spectrum and molecular aspects of myopathy and peripheral neuropathy are analysed here in a population-based cohort of patients with 3243A>G. Fifty patients were examined neurologically in order to define the frequency of myopathy and its histological, ultrastructural and clinical features. The frequency and phenotypic variability of peripheral neuropathy were determined in 32 patients and muscle computed tomography findings recorded in 24 patients. Finally, variations in mutation heteroplasmy were analysed in 10 patients using single muscle fibre PCR analysis. The frequency of peripheral neuropathy was 22% (95% confidence interval (CI), 9–40%) and that of clinical myopathy 50% (95% CI, 36–64%). Moderate limb weakness was the most common myopathic feature, but mild weakness and external ophthalmoplegia were also present. CT scans revealed myopathic changes in 54% of the patients (95% CI, 33–76%), most frequently in the pelvic muscles. The incidence of myopathy was highest in the fifth decade of life, and higher age and male gender increased the risk of neuropathy. Muscle histology was abnormal in 72% of the cases examined (95% CI, 55–86%). The presence of intramitochondrial crystals and COX-negative fibres and variations in the size and shape of mitochondria were more common in the muscle of myopathic patients. Single muscle fibre analysis pointed to a correlation between the mutation load in ragged red fibres and in adjacent histologically normal fibres, and the proportion of 3243A>G in histologically normal muscle fibres showed a pattern compatible with random genetic drift. The results indicate that myopathy and peripheral neuropathy are common in patients with the 3243A>G and that myopathy is highly variable in presentation. Segregation of 3243A>G in individual muscle fibres showed a complex process with random and non-random elements

    Phenotype of patients with Charcot-Marie-Tooth with the p.His123Arg mutation in GDAP1 in northern Finland

    No full text
    Abstract Background and Objectives:Mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene cause autosomal dominant or autosomal recessive forms of Charcot-Marie-Tooth disease (CMT). Our aim was to study the clinical phenotype of patients with CMT caused by heterozygous p.His123Arg in GDAP1. Methods:Twenty-three Finnish patients were recruited from a population-based cohort and through family investigation. Each patient was examined clinically and electrophysiologically. The Neuropathy Symptom Score and the Neuropathy Disability Score (NDS) were used in clinical evaluation. Results:The median age at onset of symptoms was 17 years among patients with p.His123Arg in GDAP1. Motor symptoms were markedly more common than sensory symptoms at onset. All patients had distal weakness in lower extremities, and 17 (74%) patients had proximal weakness. Muscle atrophy and pes cavus were also common. Nineteen (82%) patients had sensory symptoms such as numbness or pain. The disease progressed with age, and the NDS increased 8.5 points per decade. Electrodiagnostic testing revealed length-dependent, sensory and motor axonal polyneuropathy. EDx findings were asymmetrical in 14 patients. Genealogic study of the families suggested a founder effect. Discussion:We found that CMT in patients with p.His123Arg in GDAP1 is relatively mild and slow in progression

    Mutation m.15923A>G in the MT-TT gene causes mild myopathy – case report of an adult-onset phenotype

    No full text
    Abstract Background: Only five patients have previously been reported to harbor mutations in the MT-TT gene encoding mitochondrial tRNA threonine. The m.15923A > G mutation has been found in three severely affected children. One of these patients died within days after birth and two had a phenotype of myoclonic epilepsy with ragged red fibers (MERRF) in early childhood. We have now found the mutation in an adult patient with mild myopathy. Case presentation: The patient is a 64-year-old Finnish man, who developed bilateral ptosis, diplopia and exercise intolerance in his fifties. Family history was unremarkable. Muscle histology showed cytochrome c-oxidase (COX) negative and ragged red fibres. The m.15923A > G mutation heteroplasmy was 33% in the skeletal muscle and 2% in buccal epithelial cells. The mutation was undetectable in the blood. Single-fibre analysis was performed and COX-negative fibres had a substantially higher heteroplasmy of 92%, than the normal fibres in which it was 43%. Conclusions: We report the fourth patient with m. 15923A > G and with a remarkably milder phenotype than the previous three patients. Our findings and recent biochemical studies suggest that the mutation m.15923A > G is a definite disease-causing mutation. Our results also suggest that heteroplasmy of the m.15923A > G mutation correlates with the severity of the phenotype. This study expands the catalog of the phenotypes caused by mutations in mtDNA

    Impact of age and sex on the efficacy of fremanezumab in patients with difficult-to-treat migraine: results of the randomized, placebo-controlled, phase 3b FOCUS study

    Get PDF
    Background: Migraine prevalence is age and sex dependent, predominating in women in early and middle adulthood; however, migraine also represents a substantial burden for men and adults of all ages. Thus, understanding this burden and the efficacy of migraine preventive medications in both sexes and across age groups is critical. The randomized, placebo-controlled, double-blind, phase 3b FOCUS study demonstrated the safety and efficacy of fremanezumab, a fully humanized monoclonal antibody (IgG2∆a) that selectively targets calcitonin gene-related peptide as a migraine preventive treatment for individuals with migraine and prior inadequate response to 2 to 4 migraine preventive medication classes. Here, we assessed the efficacy of fremanezumab in participants from FOCUS subgrouped by age (18–45 years and > 45 years) and sex. Methods: In the FOCUS study, eligible participants were randomized (1:1:1) to 12 weeks of double-blind treatment with quarterly fremanezumab, monthly fremanezumab, or matched monthly placebo. In this post hoc analysis, we evaluated changes from baseline in monthly migraine days (primary endpoint of FOCUS) and other secondary and exploratory efficacy outcomes in prespecified age (18–45 and > 45 years) and sex subgroups.  Results: The modified intention-to-treat population (received ≥ 1 dose of study drug and had ≥ 10 days of postbaseline efficacy assessments for the primary endpoint) totaled 837 participants (18–45 years, n = 373; > 45 years, n = 464; male, n = 138; female, n = 699). Consistent reductions in monthly average number of migraine days during 12 weeks were observed, regardless of age (18–45 years: quarterly fremanezumab, − 4.1 days; monthly fremanezumab, − 4.7 days; placebo, − 0.9 days; P 45 years: quarterly fremanezumab, − 3.6 days; monthly fremanezumab, − 3.7 days; placebo, − 0.3 days; P < 0.001) and sex (male: quarterly fremanezumab, − 4.1 days; monthly fremanezumab, − 4.6 days; placebo, − 0.3 days; P < 0.001; female: quarterly fremanezumab, − 3.6 days; monthly fremanezumab, − 3.9 days; placebo, − 0.6 days; P < 0.001). Fremanezumab also reduced monthly headache days of at least moderate severity, monthly days of acute medication use, and improved Migraine Disability Assessment scores across subgroups.  Conclusions: These results demonstrate the efficacy of fremanezumab in patients with difficult-to-treat migraine for reducing migraine and headache days, acute medication use, and disability, regardless of age or sex
    corecore