12 research outputs found
Resonance ionization spectroscopy of thorium isotopes - towards a laser spectroscopic identification of the low-lying 7.6 eV isomer of Th-229
In-source resonance ionization spectroscopy was used to identify an efficient
and selective three step excitation/ionization scheme of thorium, suitable for
titanium:sapphire (Ti:sa) lasers. The measurements were carried out in
preparation of laser spectroscopic investigations for an identification of the
low-lying Th-229m isomer predicted at 7.6 +- 0.5 eV above the nuclear ground
state. Using a sample of Th-232, a multitude of optical transitions leading to
over 20 previously unknown intermediate states of even parity as well as
numerous high-lying odd parity auto-ionizing states were identified. Level
energies were determined with an accuracy of 0.06 cm-1 for intermediate and
0.15 cm-1 for auto-ionizing states. Using different excitation pathways an
assignment of total angular momenta for several energy levels was possible. One
particularly efficient ionization scheme of thorium, exhibiting saturation in
all three optical transitions, was studied in detail. For all three levels in
this scheme, the isotope shifts of the isotopes Th-228, Th-229, and Th-230
relative to Th-232 were measured. An overall efficiency including ionization,
transport and detection of 0.6 was determined, which was predominantly limited
by the transmission of the mass spectrometer ion optics
Laser ablation loading of a radiofrequency ion trap
The production of ions via laser ablation for the loading of radiofrequency
(RF) ion traps is investigated using a nitrogen laser with a maximum pulse
energy of 0.17 mJ and a peak intensity of about 250 MW/cm^2. A time-of-flight
mass spectrometer is used to measure the ion yield and the distribution of the
charge states. Singly charged ions of elements that are presently considered
for the use in optical clocks or quantum logic applications could be produced
from metallic samples at a rate of the order of magnitude 10^5 ions per pulse.
A linear Paul trap was loaded with Th+ ions produced by laser ablation. An
overall ion production and trapping efficiency of 10^-7 to 10^-6 was attained.
For ions injected individually, a dependence of the capture probability on the
phase of the RF field has been predicted. In the experiment this was not
observed, presumably because of collective effects within the ablation plume.Comment: submitted to Appl. Phys. B., special issue on ion trappin
Facilitating forensic examinations of multi-user computer environments through session-to-session analysis of internet history
This paper proposes a new approach to the forensic investigation of Internet history artefacts by aggregating the history from a recovered device into sessions and comparing those sessions to other sessions to determine whether they are one-time events or form a repetitive or habitual pattern. We describe two approaches for performing the session aggregation: fixed-length sessions and variable-length sessions. We also describe an approach for identifying repetitive pattern of life behaviour and show how such patterns can be extracted and represented as binary strings. Using the Jaccard similarity coefficient, a session-to-session comparison can be performed and the sessions can be analysed to determine to what extent a particular session is similar to any other session in the Internet history, and thus is highly likely to correspond to the same user. Experiments have been conducted using two sets of test data, where multiple users have access to the same computer. By identifying patterns of Internet usage that are unique to each user, our approach exhibits a high success rate in attributing particular sessions of the Internet history to the correct user. This can provide considerable help to a forensic investigator trying to establish which user was using the computer when a web-related crime was committed
TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz
The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich
nuclides with production rates sufficiently large for mass spectrometric and
laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as
well as a beam line for collinear laser spectroscopy are being installed.
Several new developments will ensure high sensitivity of the trap setup
enabling mass measurements even on a single ion. Besides neutron-rich fission
products produced in the reactor, also heavy nuclides such as 235-U or 252-Cf
can be investigated for the first time with an off-line ion source. The data
provided by the mass measurements will be of interest for astrophysical
calculations on the rapid neutron-capture process as well as for tests of mass
models in the heavy-mass region. The laser spectroscopic measurements will
yield model-independent information on nuclear ground-state properties such as
nuclear moments and charge radii of neutron-rich nuclei of refractory elements
far from stability. This publication describes the experimental setup as well
as its present status.Comment: 20 pages, 17 figure
Laser spectroscopic characterization of the nuclear-clock isomer Th
The isotope Th is the only nucleus known to possess an excited state
Th in the energy range of a few electron volts, a transition energy
typical for electrons in the valence shell of atoms, but about four orders of
magnitude lower than common nuclear excitation energies. A number of
applications of this unique nuclear system, which is accessible by optical
methods, have been proposed. Most promising among them appears a highly precise
nuclear clock that outperforms existing atomic timekeepers. Here we present the
laser spectroscopic investigation of the hyperfine structure of
Th, yielding values of fundamental nuclear properties, namely
the magnetic dipole and electric quadrupole moments as well as the nuclear
charge radius. After the recent direct detection of this long-searched-for
isomer, our results now provide detailed insight into its nuclear structure and
present a method for its non-destructive optical detection.Comment: 18 page