158 research outputs found
Mega-nourishments and aeolian developments: Lessons learned six years into the sandmotor pilot project
In 2011 a multifunctional peninsula-shaped nourishment project (the Sandmotor) was implemented on the West coast of the Netherlands. Its objectives included an increase in sediment supply towards the dunes to maintain their function as a flood defense on the longterm as well as the development of (temporary) new dune area for nature and recreational purposes. In this contribution we will present an overview of the observed developments related to aeolian processes at the Sandmotor in the first six years after implementation of the nourishment, as well as discuss the relation of these developments to specific characteristics of the design and management of the Sandmotor
Limited sensitivity of permafrost soils to heavy rainfall across Svalbard ecosystems
Together with warming air temperatures, Arctic ecosystems are expected to experience increases in heavy rainfall events. Recent studies report accelerated degradation of permafrost under heavy rainfall, which could put significant amounts of soil carbon and infrastructure at risk. However, controlled experimental evidence of rainfall effects on permafrost thaw is scarce. We experimentally tested the impact and legacy effect of heavy rainfall events in early and late summer for five sites varying in topography and soil type on the High Arctic archipelago of Svalbard. We found that effects of heavy rainfall on soil thermal regimes are small and limited to one season. Thaw rates increased under heavy rainfall in a loess terrace site, but not in polygonal tundra soils with higher organic matter content and water tables. End-of-season active layer thickness was not affected. Rainfall application did not affect soil temperature trends, which appeared driven by timing of snowmelt and organic layer thickness, particularly during early summer. Late summer rainfall was associated with slower freeze-up and colder soil temperatures the following winter. This implies that rainfall impacts on Svalbard permafrost are limited, locally variable and of short duration. Our findings diverge from earlier reports of sustained increases in permafrost thaw following extreme rainfall, but are consistent with observations that maritime permafrost regions such as Svalbard show lower rainfall sensitivity than continental regions. Based on our experiment, no substantial in-situ effects of heavy rainfall are anticipated for thawing of permafrost on Svalbard under future warming. However, further work is needed to quantify permafrost response to local redistribution of active layer flow under natural rainfall extremes. In addition, replication of experiments across variable Arctic regions as well as long-term monitoring of active layers, soil moisture and local climate will be essential to develop a panarctic perspective on rainfall sensitivity of permafrost.<br/
Shrubs and Degraded Permafrost Pave the Way for Tree Establishment in Subarctic Peatlands
Arctic and subarctic ecosystems are changing rapidly in species composition and functioning as they warm twice as fast as the global average. It has been suggested that tree-less boreal landscapes may shift abruptly to tree-dominated states as climate warms. Yet, we insufficiently understand the conditions and mechanisms underlying tree establishment in the subarctic and arctic regions to anticipate how climate change may further affect ecosystem structure and functioning. We conducted a field experiment to assess the role of permafrost presence, micro-topography and shrub canopy on tree establishment in almost tree-less subarctic peatlands of northern Finland. We introduced seeds and seedlings of four tree-line species and monitored seedling survival and environmental conditions for six growing seasons. Our results show that once seedlings have emerged, the absence of permafrost can enhance early tree seedling survival, but shrub cover is the most important driver of subsequent tree seedling survival in subarctic peatlands. Tree seedling survival was twice as high under an intact shrub canopy than in open conditions after shrub canopy removal. Under unclipped control conditions, seedling survival was positively associated with dense shrub canopies for half of the tree species studied. These strong positive interactions between shrubs and trees may facilitate the transition from today's treeless subarctic landscapes towards tree-dominated states. Our results suggest that climate warming may accelerate this vegetation shift as permafrost is lost, and shrubs further expand across the subarctic.Peer reviewe
Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana 1 complex) increases with temperature and precipitation across the tundra biome
Dissolved organic nitrogen dominates in European bogs under increasing atmospheric N deposition
To assess the effects of increased atmospheric N input on N availability in ombrotrophic peatlands, the relative concentrations of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN) were measured in bog waters along a natural gradient of atmospheric N deposition. Six European bogs were selected, spanning a range of chronic atmospheric N inputs from 0.2 to 2.0 g m-2 yr-1. DIN as well as DON concentrations increased with N deposition, the latter increasing at a sharper incline. The increase in DIN concentrations was related to the reduced capacity of the moss layer to trap atmospheric N, which in turn was a result of N saturation of the moss layer. The enhanced DON concentrations appear to be a consequence of increased leaching of organic N compounds by Sphagnum. The importance of DON on N biogeochemistry in bogs opens new perspectives in relation to nutrient limitation and organic matter turnover
A deepened water table increases the vulnerability of peat mosses to periodic drought
Here we address the combined impact of multiple stressors that are becoming more common with climate change. To study the combined effects of a lower water table (WT) and increased frequency of drought periods on the resistance and resilience of peatlands, we conducted a mesocosm experiment. This study evaluated how the photosynthesis of lawn Sphagnum mosses responds to and recovers from an experimental periodic drought after exposure to the stresses of a deep or deepened WT (naturally dry and 17-year-long water level drawdown [WLD] in fen and bog environments).We aimed to quantify if deep WTs (1) support acclimation to drought, or (2) increase the base-level physiological stress of mosses or (3) exacerbate the impact of periodic drought.There was no evidence of acclimation in mosses from drier environments; periodic drought decreased the photosynthesis of all Sphagnum species studied. WLDdecreased the photosynthesis of bog-originating mosses prior to periodic drought, indicating that these mosses were stressed by the hydrological change. Deep WTs exacerbated Sphagnum vulnerability to periodic drought, indicating that the combination of drying habitats and increasing frequency of periodic drought could lead to a rapid transition in lawn vegetation. Water-retaining traits may increase Sphagnum resilience to periodic drought. Large capitula size was associated with a higher resistance; the bog originating species studied here lacked large capitula or dense carpet structure and were more vulnerable to drought than the larger fen originating species. Consequently, lawns in bogs may become threatened.Recovery after rewetting was significant for all mosses, but none completely recovered within 3 weeks. The most drought-resilient species had fen origin, indicating that fens are less likely to undergo a sudden transition due to periodic drought.Synthesis: Water level drawdown associated with climate change increases the sensitivity of Sphagnum mosses to periods of drought and moves them closer to their tipping point as species on the edge of their ecological envelope rapidly shut down photosynthesis and recover poorly.202
Vegetation change on mountaintops in northern Sweden: Stable vascular-plant but reordering of lichen and bryophyte communities
publishedVersio
Enhanced Hydrologic Connectivity and Solute Dynamics Following Wildfire and Drought in a Contaminated Temperate Peatland Catchment
Intact peatlands provide hydrological ecosystem services, such as regulating water regimes and immobilizing pollutants within catchments. Climate change impacts including drought and wildfire may impair their functioning, potentially impacting ecosystem service delivery. Here we investigate stream water quality changes following the combined impacts of a summer drought and wildfire in a peat‐dominated catchment in the UK during 2018. The study catchment stores legacy pollutants (i.e., metals) due to past industrial activity, thus making it particularly susceptible to pollutant release during wildfires. We quantified changes in water chemistry during five storm events over a 9‐month period following the wildfire. Concentration‐discharge (C‐Q) relationships for nine solutes were analyzed to explore changes in activation and connectivity of solute source zones. Hysteresis and flushing indices of C‐Q responses further described solute dynamics during storm events. We found that most nutrient and base cation concentrations in the stream discharge were highest in the immediate post‐fire storm events and decreased during subsequent autumn and spring storms. Metal concentrations increased during autumn and spring storms, indicating delayed mobilization from within‐peat or distal headwater sources. Our findings suggest that seasonal re‐wetting and hydrologic connectivity following disturbance influenced solute source zone activation and transport in the study catchment. Water quality responses associated with wildfire and drought were primarily observed in the months following the wildfire, suggesting mobilization of pollutants peaks shortly after fire. Our results contribute to a critical understanding of the future of water quality risks in temperate peatland catchments subject to disturbances exacerbated by climate change
Enhanced Hydrologic Connectivity and Solute Dynamics Following Wildfire and Drought in a Contaminated Temperate Peatland Catchment
Intact peatlands provide hydrological ecosystem services, such as regulating water regimes and immobilizing pollutants within catchments. Climate change impacts including drought and wildfire may impair their functioning, potentially impacting ecosystem service delivery. Here we investigate stream water quality changes following the combined impacts of a summer drought and wildfire in a peat‐dominated catchment in the UK during 2018. The study catchment stores legacy pollutants (i.e., metals) due to past industrial activity, thus making it particularly susceptible to pollutant release during wildfires. We quantified changes in water chemistry during five storm events over a 9‐month period following the wildfire. Concentration‐discharge (C‐Q) relationships for nine solutes were analyzed to explore changes in activation and connectivity of solute source zones. Hysteresis and flushing indices of C‐Q responses further described solute dynamics during storm events. We found that most nutrient and base cation concentrations in the stream discharge were highest in the immediate post‐fire storm events and decreased during subsequent autumn and spring storms. Metal concentrations increased during autumn and spring storms, indicating delayed mobilization from within‐peat or distal headwater sources. Our findings suggest that seasonal re‐wetting and hydrologic connectivity following disturbance influenced solute source zone activation and transport in the study catchment. Water quality responses associated with wildfire and drought were primarily observed in the months following the wildfire, suggesting mobilization of pollutants peaks shortly after fire. Our results contribute to a critical understanding of the future of water quality risks in temperate peatland catchments subject to disturbances exacerbated by climate change
- …
