96 research outputs found

    Contested Politics and the Communist Visual: A Critical Analysis of John Heartfield\u27s Photomontages at the End of the Weimar Republic

    Get PDF
    Justin Kauffman, History, Lehigh University Abstract of Master\u27s Thesis, Submitted August 15, 2014:The aim of this thesis is to examine a conflict of Communist politics in the last pre-Nazi years of Germany\u27s Weimar Republic through the photomontages of Communist Party member John Heartfield. The research investigates a moment when a radical Communist artist sacrificed his commitment to party line to reach the leftist masses with his propaganda.In the first part of the thesis, a background on Heartfield is provided to in order to present a trajectory leading up to his propaganda work for the Die Arbeiter-Illustrierte-Zeitung (AIZ or Worker\u27s Illustrated Magazine). Following this background, the discussion delves into an analysis of the photomontage in 1930 and 1931 starting with a brief comparison to election posters of the Kommunistische Partei Deutschlands (Communist Party of Germany or KPD). This section uses the photomontage visuals and articles written about the medium in order to outline the aesthetic and practical value of the photomontage as an appealing, widespread form of propaganda. In the final part of the thesis, an analysis of Heartfield\u27s photomontages from July 1932 until February 1933 is presented along with the context of political conflict in the KPD. This section starts by exploring the moment in July 1932 when Heartfield went against the KPD party line with a montage that proposed a united front coalition with Social Democrats. In conclusion, the thesis argues that Heartfield\u27s decision to go against party line contributed to the political conflict among German Communists in 1932. Heartfield was willing to undermine short-term changes in KPD policy for the immediate need of reaching his broad audience with what he considered the correct political message

    A Multiscale Pressure-Volume Model of Cerebrospinal Fluid Dynamics: Application to Hydrocephalus

    Get PDF
    ABSTRACT Hydrocephalus is a brain disease characterized by abnormalities in the cerebrospinal fluid (CSF) circulation. The treatment is surgical in nature and continues to suffer of poor outcomes. The first mathematical model for studying the CSF pressure-volume relationship in hydrocephalus was proposed by Marmarou in the 1970s. However, the model fails to fully capture the complex CSF dynamics controlled by CSF-brain tissue interactions. In this paper we use fractional calculus to introduce multiscaling effects in Marmarou's model. We solve our fractional order non-linear differential equation analytically using a modified Adomian decomposition method

    Classical 6j-symbols and the tetrahedron

    Full text link
    A classical 6j-symbol is a real number which can be associated to a labelling of the six edges of a tetrahedron by irreducible representations of SU(2). This abstract association is traditionally used simply to express the symmetry of the 6j-symbol, which is a purely algebraic object; however, it has a deeper geometric significance. Ponzano and Regge, expanding on work of Wigner, gave a striking (but unproved) asymptotic formula relating the value of the 6j-symbol, when the dimensions of the representations are large, to the volume of an honest Euclidean tetrahedron whose edge lengths are these dimensions. The goal of this paper is to prove and explain this formula by using geometric quantization. A surprising spin-off is that a generic Euclidean tetrahedron gives rise to a family of twelve scissors-congruent but non-congruent tetrahedra.Comment: 46 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTVol3/paper2.abs.htm

    Three-dimensional BF Theories and the Alexander-Conway Invariant of Knots

    Get PDF
    We study 3-dimensional BF theories and define observables related to knots and links. The quantum expectation values of these observables give the coefficients of the Alexander-Conway polynomial.Comment: 32 pages (figures available upon request); LaTe

    The Combinatorics of Alternating Tangles: from theory to computerized enumeration

    Full text link
    We study the enumeration of alternating links and tangles, considered up to topological (flype) equivalences. A weight nn is given to each connected component, and in particular the limit n0n\to 0 yields information about (alternating) knots. Using a finite renormalization scheme for an associated matrix model, we first reduce the task to that of enumerating planar tetravalent diagrams with two types of vertices (self-intersections and tangencies), where now the subtle issue of topological equivalences has been eliminated. The number of such diagrams with pp vertices scales as 12p12^p for pp\to\infty. We next show how to efficiently enumerate these diagrams (in time 2.7p\sim 2.7^p) by using a transfer matrix method. We give results for various generating functions up to 22 crossings. We then comment on their large-order asymptotic behavior.Comment: proceedings European Summer School St-Petersburg 200

    Postmortem changes in brain cell structure: a review

    Get PDF
    Brain cell structure is a key determinant of neural function that is frequently altered in neurobiological disorders. Following the global loss of blood flow to the brain that initiates the postmortem interval (PMI), cells rapidly become depleted of energy and begin to decompose. To ensure that our methods for studying the brain using autopsy tissue are robust and reproducible, there is a critical need to delineate the expected changes in brain cell morphometry during the PMI. We searched multiple databases to identify studies measuring the effects of PMI on the morphometry (i.e. external dimensions) of brain cells. We screened 2119 abstracts, 361 full texts, and included 172 studies. Mechanistically, fluid shifts causing cell volume alterations and vacuolization are an early event in the PMI, while the loss of the ability to visualize cell membranes altogether is a later event. Decomposition rates are highly heterogenous and depend on the methods for visualization, the structural feature of interest, and modifying variables such as the storage temperature or the species. Geometrically, deformations of cell membranes are common early events that initiate within minutes. On the other hand, topological relationships between cellular features appear to remain intact for more extended periods. Taken together, there is an uncertain period of time, usually ranging from several hours to several days, over which cell membrane structure is progressively lost. This review may be helpful for investigators studying human postmortem brain tissue, wherein the PMI is an unavoidable aspect of the research

    Entangled Polymer Rings in 2D and Confinement

    Full text link
    The statistical mechanics of polymer loops entangled in the two-dimensional array of randomly distributed obstacles of infinite length is discussed. The area of the loop projected to the plane perpendicular to the obstacles is used as a collective variable in order to re-express a (mean field) effective theory for the polymer conformation. It is explicitly shown that the loop undergoes a collapse transition to a randomly branched polymer with RlN14R\propto lN^\frac{1}{4}.Comment: 17 pages of Latex, 1 ps figure now available upon request, accepted for J.Phys.A:Math.Ge

    Equilibrium shapes of flat knots

    Get PDF
    We study the equilibrium shapes of prime and composite knots confined to two dimensions. Using rigorous scaling arguments we show that, due to self-avoiding effects, the topological details of prime knots are localised on a small portion of the larger ring polymer. Within this region, the original knot configuration can assume a hierarchy of contracted shapes, the dominating one given by just one small loop. This hierarchy is investigated in detail for the flat trefoil knot, and corroborated by Monte Carlo simulations.Comment: 4 pages, 3 figure

    Therapeutic Targeting of TFE3/IRS-1/PI3K/mTOR Axis in Translocation Renal Cell Carcinoma

    Get PDF
    Purpose: Translocation renal cell carcinoma (tRCC) represents a rare subtype of kidney cancer associated with various TFE3, TFEB, or MITF gene fusions that are not responsive to standard treatments for RCC. Therefore, the identification of new therapeutic targets represents an unmet need for this disease. Experimental Design: We have established and characterized a tRCC patient-derived xenograft, RP-R07, as a novel preclinical model for drug development by using next-generation sequencing and bioinformatics analysis. We then assessed the therapeutic potential of inhibiting the identified pathway using in vitro and in vivo models. Results: The presence of a SFPQ-TFE3 fusion [t(X;1) (p11.2; p34)] with chromosomal break-points was identified by RNA-seq and validated by RT-PCR. TFE3 chromatin immunoprecipitation followed by deep sequencing analysis indicated a strong enrichment for the PI3K/AKT/mTOR pathway. Consistently, miRNA microarray analysis also identified PI3K/AKT/mTOR as a highly enriched pathway in RP-R07. Upregulation of PI3/AKT/mTOR pathway in additional TFE3–tRCC models was confirmed by significantly higher expression of phospho-S6 (P < 0.0001) and phospho-4EBP1 (P < 0.0001) in established tRCC cell lines compared with clear cell RCC cells. Simultaneous vertical targeting of both PI3K/AKT and mTOR axis provided a greater antiproliferative effect both in vitro (P < 0.0001) and in vivo (P < 0.01) compared with single-node inhibition. Knockdown of TFE3 in RP-R07 resulted in decreased expression of IRS-1 and inhibited cell proliferation. Conclusions: These results identify TFE3/IRS-1/PI3K/AKT/mTOR as a potential dysregulated pathway in TFE3–tRCC, and suggest a therapeutic potential of vertical inhibition of this axis by using a dual PI3K/mTOR inhibitor for patients with TFE3–tRCC

    Wherever I may roam-Human activity alters movements of red deer (Cervus elaphus) and elk (Cervus canadensis) across two continents

    Get PDF
    Human activity and associated landscape modifications alter the movements of animals with consequences for populations and ecosystems worldwide. Species performing long-distance movements are thought to be particularly sensitive to human impact. Despite the increasing anthropogenic pressure, it remains challenging to understand and predict animals' responses to human activity. Here we address this knowledge gap using 1206 Global Positioning System movement trajectories of 815 individuals from 14 red deer (Cervus elaphus) and 14 elk (Cervus canadensis) populations spanning wide environmental gradients, namely the latitudinal range from the Alps to Scandinavia in Europe, and the Greater Yellowstone Ecosystem in North America. We measured individual-level movements relative to the environmental context, or movement expression, using the standardized metric Intensity of Use, reflecting both the directionality and extent of movements. We expected movement expression to be affected by resource (Normalized Difference Vegetation Index, NDVI) predictability and topography, but those factors to be superseded by human impact. Red deer and elk movement expression varied along a continuum, from highly segmented trajectories over relatively small areas (high intensity of use), to directed transitions through restricted corridors (low intensity of use). Human activity (Human Footprint Index, HFI) was the strongest driver of movement expression, with a steep increase in Intensity of Use as HFI increased, but only until a threshold was reached. After exceeding this level of impact, the Intensity of Use remained unchanged. These results indicate the overall sensitivity of Cervus movement expression to human activity and suggest a limitation of plastic responses under high human pressure, despite the species also occurring in human-dominated landscapes. Our work represents the first comparison of metric-based movement expression across widely distributed populations of a deer genus, contributing to the understanding and prediction of animals' responses to human activit
    corecore