A Multiscale Pressure-Volume Model of Cerebrospinal Fluid Dynamics: Application to Hydrocephalus

Abstract

ABSTRACT Hydrocephalus is a brain disease characterized by abnormalities in the cerebrospinal fluid (CSF) circulation. The treatment is surgical in nature and continues to suffer of poor outcomes. The first mathematical model for studying the CSF pressure-volume relationship in hydrocephalus was proposed by Marmarou in the 1970s. However, the model fails to fully capture the complex CSF dynamics controlled by CSF-brain tissue interactions. In this paper we use fractional calculus to introduce multiscaling effects in Marmarou's model. We solve our fractional order non-linear differential equation analytically using a modified Adomian decomposition method

    Similar works