We study the equilibrium shapes of prime and composite knots confined to two
dimensions. Using rigorous scaling arguments we show that, due to self-avoiding
effects, the topological details of prime knots are localised on a small
portion of the larger ring polymer. Within this region, the original knot
configuration can assume a hierarchy of contracted shapes, the dominating one
given by just one small loop. This hierarchy is investigated in detail for the
flat trefoil knot, and corroborated by Monte Carlo simulations.Comment: 4 pages, 3 figure