69 research outputs found

    Prioritizing Non-marine Invertebrate Taxa for Red Listing

    Get PDF
    The IUCN Red List of threatened species is biased towards vertebrate animals, a major limitation on its utility for overall biodiversity assessment. There is a need to increase the representation of invertebrates (currently 21 % of species assessed on the List;\1 % of all invertebrates). A prioritisation system of terrestrial and freshwater groups is presented here, categorising taxa by species richness, assessment practicality, value for human land use and bioindication, and potential to act as conservation flagships. 25 major taxonomic groupings were identified as priorities, including the Annelida, Arthropoda, Mollusca and Onycophora. Of these, the high-level taxa that emerge as highest priorities are Odonata (dragonflies and damselflies), Araneae (spiders), Mantophasmatodea (heelwalkers), Plecoptera (stoneflies), non-marine Mollusca (Bivalvia and Gastropoda), Trichoptera (caddisflies), Coleoptera (beetles), Lepidoptera (moths and butterflies), Oligochaetes (earthworms), Orthoptera (grasshoppers and crickets), Decapoda (crayfish, crabs, shrimps) and Diptera (flies). Of these Red Listing is well advanced for Decapoda, freshwater Mollusca and Odonata. This leaves eight higher taxa with currently a minimum or patchy Red List assessment coverage. We recommend that Red List assessments in future focus on these groups, as well as completion of assessments for terrestrial Molluscs and Odonata. However, we also recommend realism, and as some of groups are very large, it will be necessary to focus on subsets such as certain functionally important or charismatic taxa or on a sampled subset which is representative of a larger taxon

    First report of the land planarian Endeavouria septemlineata (Hyman, 1939) (Platyhelminthes, Tricladida, Continenticola, Geoplanidae) in French Polynesia.

    Get PDF
    We report the presence of the land planarian Endeavouria septemlineata from Tahiti, French Polynesia, on the basis of a single specimen collected in 2017. Identification of the species was ascertained by external and internal morphology and DNA COI sequence. The finding is of importance for conservation, since this species is a predator of soil animals

    A strategy for the next decade to address data deficiency in neglected biodiversity

    Get PDF
    Measuring progress toward international biodiversity targets requires robust information on the conservation status of species, which the International Union for Conservation of Nature (IUCN) Red List of Threatened Species provides. However, data and capacity are lacking for most hyperdiverse groups, such as invertebrates, plants, and fungi, particularly in megadiverse or high-endemism regions. Conservation policies and biodiversity strategies aimed at halting biodiversity loss by 2020 need to be adapted to tackle these information shortfalls after 2020. We devised an 8-point strategy to close existing data gaps by reviving explorative field research on the distribution, abundance, and ecology of species; linking taxonomic research more closely with conservation; improving global biodiversity databases by making the submission of spatially explicit data mandatory for scientific publications; developing a global spatial database on threats to biodiversity to facilitate IUCN Red List assessments; automating preassessments by integrating distribution data and spatial threat data; building capacity in taxonomy, ecology, and biodiversity monitoring in countries with high species richness or endemism; creating species monitoring programs for lesser-known taxa; and developing sufficient funding mechanisms to reduce reliance on voluntary efforts. Implementing these strategies in the post-2020 biodiversity framework will help to overcome the lack of capacity and data regarding the conservation status of biodiversity. This will require a collaborative effort among scientists, policy makers, and conservation practitioners.Peer reviewe

    Negative impacts of invasive predators used as biological control agents against the pest snail Lissachatina fulica: the snail Euglandina ‘rosea’ and the flatworm Platydemus manokwari

    Get PDF
    Since 1955 snails of the Euglandina rosea species complex and Platydemus manokwari flatworms were widely introduced in attempted biological control of giant African snails (Lissachatina fulica) but have been implicated in the mass extinction of Pacific island snails. We review the histories of the 60 introductions and their impacts on L. fulica and native snails. Since 1993 there have been unofficial releases of Euglandina within island groups. Only three official P. manokwari releases took place, but new populations are being recorded at an increasing rate, probably because of accidental introduction. Claims that these predators controlled L. fulica cannot be substantiated; in some cases pest snail declines coincided with predator arrival but concomitant declines occurred elsewhere in the absence of the predator and the declines in some cases were only temporary. In the Hawaiian Islands, although there had been some earlier declines of native snails, the Euglandina impacts on native snails are clear with rapid decline of many endemic Hawaiian Achatinellinae following predator arrival. In the Society Islands, Partulidae tree snail populations remained stable until Euglandina introduction, when declines were extremely rapid with an exact correspondence between predator arrival and tree snail decline. Platydemus manokwari invasion coincides with native snail declines on some islands, notably the Ogasawara Islands of Japan, and its invasion of Florida has led to mass mortality of Liguus spp. tree snails. We conclude that Euglandina and P. manokwari are not effective biocontrol agents, but do have major negative effects on native snail faunas. These predatory snails and flatworms are generalist predators and as such are not suitable for biological control

    Responsive Hydrogels for Label-Free Signal Transduction within Biosensors

    Get PDF
    Hydrogels have found wide application in biosensors due to their versatile nature. This family of materials is applied in biosensing either to increase the loading capacity compared to two-dimensional surfaces, or to support biospecific hydrogel swelling occurring subsequent to specific recognition of an analyte. This review focuses on various principles underpinning the design of biospecific hydrogels acting through various molecular mechanisms in transducing the recognition event of label-free analytes. Towards this end, we describe several promising hydrogel systems that when combined with the appropriate readout platform and quantitative approach could lead to future real-life applications

    A ‘Third Culture’ in Economics? An Essay on Smith, Confucius and the Rise of China

    Full text link

    Reproduction in the tree frog Tachycnemis seychellensis

    No full text
    Abstract: Captive breeding of the Seychelles tree frog Tachycnemis seychellensis (Hyperoliidae) is reported. The tadpoles of this species are described and compared to those of the only other Seychelles frog to have free-living tadpoles, the Mascarene frog Ptychadena mascariensis (Ranidae). Eggs may be laid more than once a year in clumps above water. Embryonic development and hatching occurs out of water, and the fully developed tadpoles fall into the water below the egg mass. The time from hatching to metamorphosis is 45-141 days with a bimodal distribution of metamorphosis dates. Tadpoles feed on detritus. One male started calling at 450 days from metamorphosis (485 days from hatching) having reached 44mm SVL

    Flowering Ecology of the Species of the Genus Hypoxidia (Hypoxidaceae: Asparagales)

    No full text
    Hypoxidia (Hypoxidaceae) is endemic to the Seychelles islands. The two species H. rhizophylla and H. maheensis have rarely been studied. The first studies of floral ecology are described based on 19 years of observations of cultivated (1992–1994) and wild (1998–2011) plants of H. rhizophylla and a single flowering event of cultivated H. maheensis. In H. rhizophylla, heavy rainfall acts as a trigger to flowering, with flowers opening 14 days after heavy rain. This can occur in any month and local rainfall can act as a trigger even in generally dry conditions. Flowers are only open for a few hours, usually in the morning. Pollinators have not been identified but only one specie has been seen visiting flowers regularly; the fly Dichaetomyia fasciculifera (Muscidae) is common on Silhouette island where 12% of flowers are pollinated but very scarce on Mahé where fruiting of H. rhizophylla is rarely recorded. Low rates of pollination and limited dispersal is thought to result in effective isolation of most populations which probably mainly reproduce clonally. Clarification of this requires further research into genetic structuring of the populations

    A new species of Piper (Piperaceae) from the Seychelles

    No full text
    A new species of Piper (Piperaceae), P. silhouettanum, is described from the Anse Mondon river valley, Silhouette Island, Seychelles. This species is close to P. nigrum but distinguished by its different venation, glabrous leaves, persistent elongated stipules and reduced bracts. This species is restricted to one valley where it is found in 1.7 hectares

    Predation by invasive Platydemus manokwari flatworms: a laboratory study

    No full text
    Platydemus manokwari de Beauchamp, 1963 is an invasive flatworm found on islands in the tropics, especially in the Pacific Ocean. It has been implicated in the decline of several snail populations, including the extinction of some Partula species. Its predatory behaviour was investigated to quantify predation rates and elucidate climatic influences. This laboratory study of the invasive flatworm confirms earlier reports that P. manokwari is a generalist predator of snails. It prefers small prey and avoids species defended by copious mucus, chemical defences or a tough integument. Prey are found by following damp mucus trails up to 15 h old. Flatworm activity is limited by temperature and humidity, with peak feeding at 24–30°C and 85–95% humidity. This determines the geographical spread of the species and probably also the effectiveness of arboreal predation. Aboveground air circulation leads to drying, reducing the ability of the flatworms to locate trails and remain active high off the ground. Local climatic factors may dictate how significantly P. manokwari affects snail populations
    • …
    corecore