210 research outputs found

    Atmospheric Gaseous Sulfuric Acid and Methanesulfonic Acid in the Marine Boundary Layer:: Mass Spectrometric Measurements on a Research Ship Cruise

    Get PDF
    This work is focused on the presentation and analysis of measurements of gaseous sulfuric acid (H2SO4) and methanesulfonic acid (MSA, CH4SO3) performed during the 3 week ship campaign on the research vessel "Celtic Explorer", as part of the European project on Marine Aerosol Production (MAP). The Max Planck-Institute for Nuclear Physics (MPI-K) adapted the CIMS - measurement setup (Chemical Ionization Mass Spectrometry) equipped with an Ion Trap Mass Spectrometer (ITMS) to a sea-container, which was for the first time employed for measurements in remote marine air on the Atlantic Ocean. The course was set at latitudes between 50o and 58o North during the season of high plankton bloom. Plankton is due to its emission of dimethyl sulfide (DMS, (CH3)2S) of relevance for sulfate aerosol production and cloud formation. High concentrations of the DMS oxidation products MSA with values of the order of 107cm¡3 and low concentrations of H2SO4 with an average of 1.70¢106cm¡3 were observed. The comparison with additional data such as SO2 concentrations, which were also measured with the CIMS-method by the MPI-K, aerosol number and size distributions, as well as aerosol composition measured during the cruise were used for the analysis of possible sinks and sources of the two gaseous species in the Marine Boundary Layer

    Atmospheric Gaseous Sulfuric Acid and Methanesulfonic Acid in the Marine Boundary Layer:: Mass Spectrometric Measurements on a Research Ship Cruise

    Get PDF
    This work is focused on the presentation and analysis of measurements of gaseous sulfuric acid (H2SO4) and methanesulfonic acid (MSA, CH4SO3) performed during the 3 week ship campaign on the research vessel "Celtic Explorer", as part of the European project on Marine Aerosol Production (MAP). The Max Planck-Institute for Nuclear Physics (MPI-K) adapted the CIMS - measurement setup (Chemical Ionization Mass Spectrometry) equipped with an Ion Trap Mass Spectrometer (ITMS) to a sea-container, which was for the first time employed for measurements in remote marine air on the Atlantic Ocean. The course was set at latitudes between 50o and 58o North during the season of high plankton bloom. Plankton is due to its emission of dimethyl sulfide (DMS, (CH3)2S) of relevance for sulfate aerosol production and cloud formation. High concentrations of the DMS oxidation products MSA with values of the order of 107cm¡3 and low concentrations of H2SO4 with an average of 1.70¢106cm¡3 were observed. The comparison with additional data such as SO2 concentrations, which were also measured with the CIMS-method by the MPI-K, aerosol number and size distributions, as well as aerosol composition measured during the cruise were used for the analysis of possible sinks and sources of the two gaseous species in the Marine Boundary Layer

    Reply to comment from Liotta and Rizzo on “Evolution of CO2 , SO2 , HCl and HNO3 in the volcanic plumes from Etna” by Voigt et al. [Geophys. Res. Lett.; 41, doi:10.1002/2013GL058974]

    Get PDF
    Editor’s Note: The following comment and reply arise from an article published in Geophysical Research Letters by Voigt et al. (2014). The article addresses a volcanology topic, and the commenters take issue with some conclusions and offer an analysis of their own. Voigt and co-authors have responded. Why is this comment-and-reply being published in the Bulletin? It is because Geophysical Research Letters is one of a number of journals that do not offer any published forum for discussion of the papers they publish. This is a matter of editorial policy and a decision for each journal. The Bulletin of Volcanology does provide a forum for discussion of articles published. When contacted by Marcello Liotta with the request that the Bulletin consider hosting a discussion of the Voigt et al. volcanology article in GRL, I agreed to do so if the GRL authors were willing to engage with the comment. Voigt and co-authors were willing to do so and have been allowed a small amount of additional space to summarize for Bulletin readers the key points of the GRL paper under discussion before responding directly to the comment from Liotta and Rizzo. I hope that Bulletin readers find the discussion and reply of interest

    On Kaluza's sign criterion for reciprocal power series

    Full text link
    T. Kaluza has given a criterion for the signs of the power series of a function that is the reciprocal of another power series. In this note the sharpness of this condition is explored and various examples in terms of the Gaussian hypergeometric series are given. A criterion for the monotonicity of the quotient of two power series due to M. Biernacki and J. Krzy\.z is applied.Comment: 13 page

    Thermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft

    No full text
    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable for different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the particle penetration speed through the instruments' detection area equals the aircraft speed (True Air Speed, TAS). However, particle imaging instruments equipped with pitot-tubes measuring the Probe Air Speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO – High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation the corresponding concentration correction factor ξ is applicable to the high frequency measurements of each underwing probe which is equipped with its own air speed sensor (e.g. a pitot-tube). ξ-values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 260 m s−1. From HALO data it is found that ξ does not significantly vary between the different deployed instruments. Thus, for the current HALO underwing probe configuration a parameterisation of ξ as a function of TAS is provided for instances if PAS measurements are lacking. The ξ-correction yields higher ambient particle concentration by about 15–25 % compared to conventional procedures – an improvement which can be considered as significant for many research applications. The calculated ξ-values are specifically related to the considered HALO underwing probe arrangement and may differ for other aircraft or instrument geometries. Moreover, the ξ-correction may not cover all impacts originating from high flight velocities and from interferences between the instruments and, e.g., the aircraft wings and/or fuselage. Consequently, it is important that PAS (as a function of TAS) is individually measured by each probe deployed underneath the wings of a fast-flying aircraft

    Depletion of Ozone and Reservoir Species of Chlorine and Nitrogen Oxide in the Lower Antarctic Polar Vortex Measured from Aircraft

    Get PDF
    Novel airborne in situ measurements of inorganic chlorine, nitrogen oxide species, and ozone were performed inside the lower Antarctic polar vortex and at its edge in September 2012. We focus on one flight during the Transport and Composition of the LMS/Earth System Model Validation (TACTS/ESMVal) campaign with the German research aircraft HALO (High-Altitude LOng range research aircraft), reaching latitudes of 65°S and potential temperatures up to 405 K. Using the early winter correlations of reactive trace gases with N2O from the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), we find high depletion of chlorine reservoir gases up to ∼40% (0.8 ppbv) at 12 km to 14 km altitude in the vortex and 0.4 ppbv at the edge in subsided stratospheric air with mean ages up to 4.5 years. We observe denitrification of up to 4 ppbv, while ozone was depleted by 1.2 ppmv at potential temperatures as low as 380 K. The advanced instrumentation aboard HALO enables high-resolution measurements with implications for the oxidation capacity of the lowermost stratosphere. ©2017. American Geophysical Union

    Design, construction and commissioning of the Braunschweig Icing Wind Tunnel

    Get PDF
    Beyond its physical importance in both fundamental and climate research, atmospheric icing is considered as a severe operational condition in many engineering applications like aviation, electrical power transmission and wind-energy production. To reproduce such icing conditions in a laboratory environment, icing wind tunnels are frequently used. In this paper, a comprehensive overview on the design, construction and commissioning of the Braunschweig Icing Wind Tunnel is given. The tunnel features a test section of 0.5 m  ×  0.5 m with peak velocities of up to 40 m s−1. The static air temperature ranges from −25 to +30 °C. Supercooled droplet icing with liquid water contents up to 3 g m−3 can be reproduced. The unique aspect of this facility is the combination of an icing tunnel with a cloud chamber system for making ice particles. These ice particles are more realistic in shape and density than those usually used for mixed phase and ice crystal icing experiments. Ice water contents up to 20 g m−3 can be generated. We further show how current state-of-the-art measurement techniques for particle sizing are performed on ice particles. The data are compared to those of in-flight measurements in mesoscale convective cloud systems in tropical regions. Finally, some applications of the icing wind tunnel are presented

    Fascial tissue research in sports medicine: from molecules to tissue adaptation, injury and diagnostics.

    Get PDF
    The fascial system builds a three-dimensional continuum of soft, collagen-containing, loose and dense fibrous connective tissue that permeates the body and enables all body systems to operate in an integrated manner. Injuries to the fascial system cause a significant loss of performance in recreational exercise as well as high-performance sports, and could have a potential role in the development and perpetuation of musculoskeletal disorders, including lower back pain. Fascial tissues deserve more detailed attention in the field of sports medicine. A better understanding of their adaptation dynamics to mechanical loading as well as to biochemical conditions promises valuable improvements in terms of injury prevention, athletic performance and sports-related rehabilitation. This consensus statement reflects the state of knowledge regarding the role of fascial tissues in the discipline of sports medicine. It aims to (1) provide an overview of the contemporary state of knowledge regarding the fascial system from the microlevel (molecular and cellular responses) to the macrolevel (mechanical properties), (2) summarise the responses of the fascial system to altered loading (physical exercise), to injury and other physiological challenges including ageing, (3) outline the methods available to study the fascial system, and (4) highlight the contemporary view of interventions that target fascial tissue in sport and exercise medicine. Advancing this field will require a coordinated effort of researchers and clinicians combining mechanobiology, exercise physiology and improved assessment technologies

    Contrail formation on ambient aerosol particles for aircraft with hydrogen combustion: a box model trajectory study

    Get PDF
    Future air traffic using (green) hydrogen (H2) promises zero carbon emissions, but the effects of contrails from this new technology have hardly been investigated. We study contrail formation behind aircraft with H2 combustion by means of the particle-based Lagrangian Cloud Module (LCM) box model. Assuming the absence of soot and ultrafine volatile particle formation, contrail ice crystals form solely on atmospheric background particles mixed into the plume. While a recent study extended the original LCM with regard to the contrail formation on soot particles, we further advance the LCM to cover the contrail formation on ambient particles. For each simulation, we perform an ensemble of box model runs using the dilution along 1000 different plume trajectories. The formation threshold temperature of H2 contrails is around 10 K higher than for conventional contrails (which form behind aircraft with kerosene combustion). Then, contrail formation becomes primarily limited by the homogeneous freezing temperature of the water droplets such that contrails can form at temperatures down to around 234 K. The number of ice crystals formed varies strongly with ambient temperature even far away from the contrail formation threshold. The contrail ice crystal number clearly increases with ambient aerosol number concentration and decreases significantly for ambient particles with mean dry radii ⪅ 10 nm due to the Kelvin effect. Besides simulations with one aerosol particle ensemble, we analyze contrail formation scenarios with two co-existing aerosol particle ensembles with different mean dry sizes or hygroscopicity parameters. We compare them to scenarios with a single ensemble that is the average of the two aerosol ensembles. We find that the total ice crystal number can differ significantly between the two cases, in particular if nucleation-mode particles are involved. Due to the absence of soot particle emissions, the ice crystal number in H2 contrails is typically reduced by more than 80 %–90 % compared to conventional contrails. The contrail optical thickness is significantly reduced, and H2 contrails either become visible later than kerosene contrails or are not visible at all for low ambient particle number concentrations. On the other hand, H2 contrails can form at lower flight altitudes where conventional contrails would not form.</p

    Hypokalemic Periodic Paralysis: a case report and review of the literature

    Get PDF
    Hypokalemic Periodic Paralysis is one form of Periodic Paralysis, a rare group of disorders that can cause of sudden onset weakness. A case of a 29 year old male is presented here. The patient presented with sudden onset paralysis of his extremities. Laboratory evaluation revealed a markedly low potassium level. The patient's paralysis resolved upon repletion of his low potassium and he was discharged with no neurologic deficits. An association with thyroid disease is well established and further workup revealed Grave's disease in this patient. Although rare, Periodic Paralysis must differentiated from other causes of weakness and paralysis so that the proper treatment can be initiated quickly
    corecore