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Abstract  37 

 38 

Background: The fascial system builds a three-dimensional continuum of soft, collagen-39 

containing, loose and dense fibrous connective tissue that permeates the body and enables all 40 

body systems to operate in an integrated manner. Injuries to the fascial system cause a significant 41 

loss of performance in recreational exercise as well as high performance sports and could have a 42 

potential role in the development and perpetuation of musculoskeletal disorders, including lower 43 

back pain.  44 

 45 

Fascial tissues deserve more detailed attention in the field of sports medicine. A better 46 

understanding of their adaptation dynamics to mechanical loading as well as to biochemical 47 

conditions promises valuable improvements in terms of injury prevention, athletic performance 48 

and sports-related rehabilitation.  49 

 50 

This consensus statement reflects the state of knowledge regarding the role of fascial tissues in 51 

the discipline of sports medicine. It aims to: (i) provide an overview of the contemporary state of 52 

knowledge regarding the fascial system from the micro level (molecular and cellular responses) 53 

to the macro level (mechanical properties), (ii) summarise responses of the fascial system to 54 

altered loading (physical exercise), to injury and other physiological challenges including ageing, 55 

(iii) outline methods available to study the fascial system, and (iv) highlight the contemporary 56 

view of interventions that target fascial tissue in sport and exercise medicine.  57 

 58 

Advancing this field will require a co-ordinated effort of researchers and clinicians combining 59 

mechanobiology, exercise physiology and improved assessment technologies. 60 

 61 

62 
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Terminology and definitions 63 

 64 

The term fascia was originally used to describe a sheet or band of soft connective tissue that 65 

attaches, surrounds and separates internal organs and skeletal muscles. Advancing research on the 66 

physiological and pathophysiological behaviour of a range of connective tissues has revealed that 67 

this definition is too restrictive. Understanding of mechanical aspects of connective tissue 68 

function depends on consideration of a host of interconnected and interwoven connective tissues 69 

beyond these sheets or bands, and there is enormous potential gain from understanding the 70 

convergence of biology underpinning adaptation, function and pathology.  71 

 72 

The fascial system includes adipose tissue, adventitiae, neurovascular sheaths, aponeuroses, deep 73 

and superficial fasciae, dermis, epineurium, joint capsules, ligaments, membranes, meninges, 74 

myofascial expansions, periostea, retinacula, septa, tendons (including endo-/peri-/epi-75 

/paratendon), visceral fasciae and all the intra- and intermuscular connective tissues, including 76 

endo-/peri-/epimysium.1   77 

 78 

With its diverse components, the fascial system builds a three-dimensional continuum of soft, 79 

collagen-containing, loose and dense fibrous connective tissue that permeates the body and 80 

enables all body systems to operate in an integrated manner (Fig. 1).1 In contrast, the 81 

morphological/histological definition describes fascia as ‘a sheet, or any other dissectible 82 

aggregations of connective tissue that forms beneath the skin to attach, enclose, and separate 83 

muscles and other internal organs’.1 The proposed terminology distinguishing the terms ‘fascia’ 84 

and ‘fascial system’ allows for the precise identification of individual structures as well as 85 

grouping them for functional purposes. 86 

 87 

Consensus meeting 88 

 89 

The 2nd international CONNECT conference was held at the University of Ulm, Germany, during 90 

16th–19th March 2017, as part of a conference series aimed at fostering scientific progress towards 91 

a better understanding and treatment of fascial tissues in sports medicine. After the conference, a 92 

meeting was held with conference speakers and other field-related experts to discuss and find 93 

consensus regarding the role of fascial tissue in the field of sports medicine.  94 

 95 

Injuries to a variety of fascial tissues cause a significant loss of performance in sports2  and have a 96 

potential role in the development and perpetuation of musculoskeletal disorders, including lower 97 

back pain.3 A major goal of clinicians is to return athletes and patients to activity, training and 98 

competition after injury.  99 

 100 

This consensus statement reflects the current state of knowledge regarding the role of fascial 101 

tissues in the discipline of Sports Medicine and will be updated as part of a consensus meeting 102 

during the CONNECT conference. This paper aims to summarize the contemporary state of 103 
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knowledge regarding the fascial system from the micro level (molecular and cellular responses) 104 

to the macro level (mechanical properties) and responses of the fascial system to altered loading 105 

(physical exercise), to injury and other physiological challenges including ageing, methods 106 

available to study the fascial system, and the contemporary view of interventions that target 107 

fascial tissue in sports medicine. This document was developed for scientists and clinicians to 108 

highlight common traps and truths of fascial tissue screening and imaging techniques and 109 

intervention methods and to present a multidisciplinary perspective of future research in the field. 110 

 111 

Molecular adaptation of fascial tissues: effects of physical exercise, ageing, sex hormones 112 

and inflammation 113 

 114 

Molecular crosstalk between extracellular matrix (ECM) molecules and cellular components is an 115 

important determinant of fascial tissue physiology and pathophysiology. A molecular chain, 116 

characterised by high functional and structural plasticity and bidirectional molecular interactions, 117 

connects the cellular cytoskeleton to the ECM (Fig. 2). Small functional and structural alterations 118 

in the ECM result in complex cellular adaptation processes and, vice versa, changes in cell 119 

function and structure leading to ECM adaptation.4 Therefore, fascial tissue homeostasis is the 120 

result of a complex interplay and dynamic crosstalk between cellular components and the ECM. 121 

Especially under dynamic conditions such as growth and regeneration, strong alterations of local 122 

ECM microenvironments are necessary to allow cellular adaptation and rebuilding of fascial 123 

tissues. All factors influencing cell or ECM behaviour can result in changes in the structure and 124 

homeostasis of tissues and organs. 125 

 126 

The ECM also works as a molecular store, catching and releasing biologically active molecules to 127 

regulate tissue and organ function, growth and regeneration. Molecules stored in the ECM 128 

network can be cleaved to release biologically active cleavage products.5 Mechanical stress can 129 

induce the release and activation of ECM-stored molecules, inducing the cleavage products of 130 

collagen XVIII and other basement membrane components. It has been shown that endostatin 131 

(the 20 kDa C-terminal fragment of collagen XVIII) can modulate vascular growth and 132 

function.6-8 In addition, changes of the ECM by ageing or physical exercise may be involved in 133 

triggering systemic effects via excreted circulatory molecules, such as the exercise-responsive 134 

myokine irisin,9 which has been proposed to increase energy expenditure in mice and humans. 135 

 136 

In fascial tissues such as tendons, acute and chronic loading stimulates collagen remodelling.10 As 137 

the exercise-induced increase in collagen synthesis is lower in women than in men, and as injury 138 

frequency and the expression of estrogen receptors in human fascial tissue are sex-dependent, 139 

estrogens may play an important regulatory role in ECM remodeling.11-13 The effects of estrogens 140 

on collagen synthesis appear to differ between rest and response to exercise. While estrogen 141 

replacement in elderly, post-menopausal women impairs collagen synthesis in response to 142 

exercise, estrogen has a stimulating effect on collagen synthesis at rest.14 Oral contraceptives, on 143 

the other hand, have an overall depressing effect on collagen synthesis.15  144 

 145 
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Physiological ageing is a highly individual process characterised by a progressive degeneration of 146 

tissues and organ systems. Age-related alterations in fascial tissues include densification 147 

(alterations of loose connective tissue) and fibrosis (alterations of collagen fibrous bundles).16 148 

Functionally, these pathological changes can modify the mechanical properties of fascial tissues 149 

and skeletal muscle, thereby contributing to pain- and age-related reductions in muscle force or 150 

range of motion, which cannot be solely explained by the loss of muscle mass.17 ECM structural, 151 

biochemical, cellular and functional changes occur during ageing.18  Interestingly, ageing is 152 

characterised by chronic, low-grade inflammation—so-called inflammaging.19  As the ECM is the 153 

main site of inflammatory responses taking place in tissues, it is not surprising that the ECM can 154 

interact with immune cells to change their function, which is important for growth and 155 

regeneration of tissues. Leukocyte extravasation depends on cleavage of the basal membrane by 156 

locally released proteases. Tenascin and osteopontin are examples of ECM molecules important 157 

for regulation of the local immune response.20 21 In addition, the ECM plays an important role as a 158 

barrier for transmigration of immune cells in and out of the tissue. Although early inflammation 159 

after tissue damage due to physical exercise or injury is crucial for tissue remodelling and 160 

adaptation,22 23  stem-cell activity and collagen synthesis may be inhibited by the chronic intake 161 

of non-steroidal anti-inflammatory drugs (NSAIDs) prior to exercise.24 25  However, limiting the 162 

magnitude of inflammation might be beneficial for tissue regeneration and gains in muscle mass 163 

and strength, depending on the nature of the injury,26  and in elderly people.27  164 

 165 

Outlook and perspectives for future research: 166 

Insights into the structure–function relationship of the ECM, especially in ageing and injured 167 

fascial tissues and skeletal muscle, are highly relevant for maintaining musculoskeletal function 168 

in the elderly during daily life and exercise and for prevention of exercise-related overuse injuries 169 

in athletes. While a body of literature exists on metabolic activity and ECM remodelling in 170 

human tendons in response to exercise, much less is known and more research is needed to 171 

investigate the molecular response of other fascial tissues (such as intramuscular fascial tissue) to 172 

altered loading and ageing. 173 

 174 

 175 

Myofascial force transmission 176 

 177 

Conventionally, skeletal muscles have been considered as primarily transmitting force to their 178 

osseous insertions through the myotendinous junction.28  However, in situ experiments in animals 179 

and imaging studies in humans have shown that inter- and extramuscular fascial tissues also 180 

provide a pathway for force transmission.29-33 Although the magnitude of non-myotendinous 181 

force transmission under in vivo conditions is disputed,34 35 the contribution of these pathways is 182 

thought to be dependent, in part, on the mechanical properties of myofascial tissue linkages.36 183 

Myofascial tissue that is stiffer or more compliant than normal has been shown to influence the 184 

magnitude of intermuscular force transmission and, arguably, may have a significant effect on 185 

muscle mechanics.37-39 The mechanical properties of fascial tissues can be modified by several 186 

factors, which, inter alia, include a change in fluid content, cross-links and molecular 187 
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organization and content of specific ECM molecules and contractile activity of myofibroblast 188 

cells.40 41 Changes can also be a consequence of muscle injury,42 disease,43 surgical treatment37  or 189 

ageing (Fig. 3).44  190 

 191 

As fascial tissues connect skeletal muscles, creating a multidirectional network of myofascial 192 

continuity45 , altered local forces (e.g. by muscular contraction) might also affect the mechanics 193 

of adjacent tissues. In fact, a plethora of cadaveric and animal studies have demonstrated 194 

substantial mutual interactions between neighbouring muscles arranged serially in slings (e.g. M. 195 

latissimus and M. gluteus maximus)46 and parallel to each other (e.g. lower limb synergists).47  196 

For example, when seen from a fascial perspective, the knee-joint capsule is not only influenced 197 

by directly inserting tendons but also by more distant structures such as the gluteus maximus or 198 

the tensor fasciae latae and their connecting fasciae.48 However, it remains to be further 199 

elucidated how such findings translate into human in vivo conditions. 200 

Although scarce, initial in vivo evidence points towards a significant role of myofascial force 201 

transmission for the locomotor system. Available data point towards the existence of (a) remote 202 

exercise effects and (b) non-local symptom manifestations in musculoskeletal disorders, both of 203 

which might be of relevance in athletic and therapeutic settings. It has been shown that stretching 204 

of the lower limb increases range of motion of the cervical spine, and patients with sacroiliac pain 205 

display hyperactivity of the gluteus maximus and the contralateral latissimus muscle.49-51  206 

Because the involved body regions are connected via myofascial chains, myofascial force 207 

transmission might be the cause of the observations. Besides interactions between muscles 208 

arranged in series, significant amounts of force have been shown to be transmitted in vivo 209 

between muscles located parallel to each other; electrical stimulation of the gastrocnemius 210 

muscle leads to a simultaneous displacement of the soleus muscle.30  This intralimb myofascial 211 

force transmission may be of relevance in diseases such as cerebral palsy.38  212 

 213 

Outlook and perspectives for future research: 214 

Although the basic mechanisms of myofascial force transmission have been studied, there is a 215 

need to discern the influence of variables, such as age, sex, temperature and level of physical 216 

activity within healthy physiological and pathological settings. Furthermore, despite convincing 217 

in-vitro evidence for the existence of myofascial force transmission, its relative contribution to 218 

the occurrence of remote exercise effects under in vivo conditions has to be further elucidated. 219 

Besides mechanical interactions between adjacent tissues, non-local changes of stiffness or 220 

flexibility may also (at least partly) stem from neural adaptations, e.g. a systemic reduction of 221 

stretch tolerance.  222 

 223 

Injury of fascial tissues: cellular and mechanical responses to damage 224 

 225 
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Excessive or prolonged loading or direct trauma to fascial tissues initiates micro and macro 226 

changes necessary for tissue repair. These effects may also contribute to pathological changes 227 

that modify tissue function and mechanics, leading to compromised function of healthy tissue. 228 

Effects may become systemic, and thus not limited to the injured/loaded tissues. 229 

 230 

Following an acute injury from overload or anoxia in fascial tissues, the immune response aims 231 

to phagocytose injured cells. An acute inflammatory response is typically short-lived and 232 

reversible and involves the release of a range of molecules, including pro-inflammatory cytokines 233 

from injured cells and macrophages, along with other substances (e.g. bradykinin, substance P 234 

and proteases) that sensitise nociceptive afferents52 and promote immune cell infiltration. If 235 

loading is prolonged or repetitive, persistent inflammation may develop,53 54 leading to the 236 

prolonged presence of macrophages and cytotoxic levels of cytokines in and around tissues 237 

ultimately resulting in ongoing tissue damage. Some tissue cytokines (e.g. interleukin-1 [IL-1, 238 

tumour necrosis factor [TNF] and transforming growth factor beta [TGF-1]) are fibrogenic 239 

cytokines that can promote fibrosis via excessive fibroblast proliferation and collagen matrix 240 

deposition.55   241 

 242 

Overproduction of cytokines also maintains sensitisation of nociceptive afferents—a change that 243 

would increase production and release of substance P (a known nociceptor neuropeptide). Recent 244 

studies show that substance P can stimulate TGF-1 production by tendon fibroblasts and that 245 

both substance P and TGF-1 can induce fibrogenic processes independently of each other.56   246 

 247 

Taken together, these findings suggest that both neurogenic processes (nerves are the primary 248 

source of substance P) and loading/repair processes (TGF-1 is produced by fibroblasts in 249 

response to mechanical loading and during repair) can contribute to increased collagen in fascial 250 

tissues. Fibrosis (e.g. collagen deposition) around tendon, nerve and myofascial tissues influences 251 

dynamic biomechanical properties secondary to tissue adherence and can tether structures to each 252 

other or induce chronic compression.57 Increased collagenous tissues surrounding nerves can 253 

tether nerves and also enhance pain behaviours.58  Furthermore, inflammatory cytokines can ‘spill 254 

over’ into the bloodstream, leading to widespread secondary tissue damage and central nociceptor 255 

windup.53 59 Circulating TNF is elevated in chronic lower back pain,60  and recent data highlight a 256 

relationship between elevated TNF and greater risk for progression to chronic pain in some 257 

individuals 61  and in animal models of overuse.59  258 

 259 

Muscles also undergo changes in muscle fibre composition, adiposity and fibrosis in response to 260 

injury to related structures (e.g. injury to an intervertebral disc) even in the absence of muscle 261 

trauma (Fig. 4). These changes closely resemble those identified for direct muscle trauma, such 262 

as supraspinatus tendon lesion,62  although with some differences (e.g. differences in the 263 

distribution of infiltrating fat). After an injury to an intervertebral disc, deep back muscles 264 

undergo rapid atrophy,63 64 most likely mediated by neural changes such as reflex inhibition.65  265 

This is followed by changes in muscle fibre composition (slow-to-fast muscle fibre transition), 266 
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fibrosis and fatty infiltration associated with increased production of pro-inflammatory cytokines 267 

(e.g. TNF).66  Increased cytokine expression was first identified from mRNA analysis of muscle, 268 

but with an unclear origin. Recent work suggests this is mediated by an increased proportion of 269 

pro-inflammatory macrophages,67  hypothesised to result from altered metabolic profiles of 270 

muscle as a consequence of transition to more fast (fatigable) muscle fibres.68 Adipose tissue is a 271 

potential source of pro-inflammatory cytokines and has been implicated in a range of 272 

musculoskeletal conditions, including osteoarthritis.69  Regardless of the underlying mechanism, 273 

fibrotic changes in muscle have a substantial potential impact on tissue dynamics and force 274 

generation capacity. 275 

 276 

Exercise, physical modalities and pharmacological interventions have all been shown to reduce 277 

the inflammatory processes associated with fascial tissue injury and fibrosis. For example, early 278 

treatment with anti-inflammatory drugs can prevent/reverse pain behaviours induced by TNF 279 

signalling and reduce downstream collagen production in animal models.70  Stretching of fascial 280 

tissues can promote resolution of inflammation both in vivo and in vitro,71  and manual therapy 281 

can prevent overuse-induced fibrosis in several fascial tissues.72  In terms of muscle changes, 282 

resistance exercise is necessary to reverse fatty changes (and perhaps fibrosis) in chronic 283 

conditions,73  whereas gentle muscle activation is sufficient to reverse early muscle atrophy74  and 284 

whole body exercise can prevent inflammatory changes in back muscles that follow intervertebral 285 

disc injuries. 75   286 

 287 

 288 

Outlook and perspectives for future research: 289 

Future research is needed to gain a deeper understanding of the mechanisms underlying the 290 

impact of treatments on fibrosis and fatty changes in fascial tissues. Although there is evidence 291 

that exercise, physical therapies or pharmacological approaches can impact inflammatory 292 

processes, and reduce consequences, further work is required to understand how best to tailor 293 

interventions based on the time-course of pathology and type of exercise, or whether there is 294 

additional benefit from combined treatments. 295 

 296 

 297 

Imaging and non-imaging tools for diagnosis and assessment  298 

 299 

Pathological changes in the mechanical properties of fascial tissues have been hypothesised to 300 

play an essential role in musculoskeletal disorders such as chronic pain conditions and overuse 301 

injuries.76 As a result, considerable demand for diagnostic methods examining fascial tissue 302 

function has arisen. In basic research, an oft-used approach is to study molecular and mechanical 303 

changes in myofibroblasts and other biomarkers via needle biopsy and subsequent 304 

immunohistochemistry. 77   305 

 306 

To evaluate the effects of treatment and exercise in clinical settings, a series of methods are 307 

available (Table 1). Changes in water content can be analysed via bio-impedance assessment,78  308 
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but there is no data on reliability and validity of measurements in smaller body regions. Manual 309 

palpation represents a cost-neutral and widely used screening method aimed at assessing 310 

viscoelastic properties (e.g. stiffness); however, similarly, its reliability is limited.48 79-81  311 

However, the approach is based on a number of assumptions, and available devices often lack a 312 

thorough proof of validity.77 82  Moreover, no tissue-specific conclusions can be drawn due to the 313 

black-box character of the measurements.83  Imaging methods such as ultrasound or elastography, 314 

in contrast, are promising tools for explicitly quantifying the mechanical properties of fascial 315 

tissues under in vivo conditions.84  316 

 317 

Producing a distortion of the measured tissue (e.g. through compression or shear waves), 318 

elastography provides ultrasound images reflecting the relative hardness of the targeted area. 319 

Recently, the technique has been increasingly applied in musculoskeletal research. However, the 320 

existence of several different methods, lack of standardisation and frequent appearance of 321 

artefacts during measurements threaten the validity of achieved results.85  Without the use of 322 

elastography, the conventional ultrasound image can be reliably used to display and measure the 323 

morphology of fascial tissues, such as myofascial tissues, ligaments and tendons.86  Some initial 324 

studies have, moreover, attempted to quantify relative movement (e.g. sliding of fascial layers 325 

and shear strain) using cross-correlation calculations.87  326 

 327 

Despite some initial applications to myofascial tissues, most data on ultrasound imaging are 328 

available for tendon measurements (Fig. 5). In the late 1990s, advancements made in the 329 

application of B-mode ultrasonography allowed quantification of the tensile deformation of 330 

human tendons, in vivo, based on tracking of anatomical features in the tendon when pulled on 331 

by the force exerted in the in-series muscle during static contraction.88 Unfortunately, the in vivo 332 

stiffness and Young’s modulus results often disagree with findings from in vitro material tests, 333 

when forces and elongations are precisely controlled and measured. Errors are likely being 334 

caused by in vivo measurement simplifications in the quantification of both tendon deformation 335 

and the loading applied during the static muscle contraction. The former includes simplifications 336 

regarding the tendon’s resting length, line of pull and uniformity in material properties. The latter 337 

includes simplifications regarding the effect of loading on tendon moment arm length, the effect 338 

of antagonist muscle co-activation and the uniformity in tendon cross-sectional area. Most of 339 

these simplifications can be avoided by appropriate measurements to quantify the neglected 340 

effects. In addition, recent developments in ultrasound shear-wave propagation89  and speckle 341 

tracking90  have the potential to substantially improve experimental accuracy and physiological 342 

relevance of in vivo findings. 343 

 344 

In contrast to static muscle contraction tests aimed at assessing human tendon stiffness and 345 

Young’s modulus, scanning during dynamic activities has typically been applied to document 346 

tendon deformations directly, through morphometric analysis on scans,91 92  or indirectly, through 347 

ultrasound propagation speed analysis,93 94 to investigate the interaction between tendon and 348 

muscle in the studied task. These experimental approaches are relatively immune to problems 349 

caused by erroneous quantification of tendon forces; however, appropriate measurements need to 350 
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be taken to validate the assumption that the usual practice of tracking a single tendon anatomical 351 

point, or a tendon region limited by the size of the scanning probe, can give a representative 352 

picture for the entire tendon. 353 

 354 

 355 

Outlook and perspectives for future research: 356 

In view of the current diagnostic methods’ limitations, further research investigating the 357 

measurement properties (e.g. validity) is warranted to provide evidence-based recommendations. 358 

Hence, within the clinical assessment of mechanical soft-tissue properties, collected data should 359 

be interpreted with caution, and, as long as no clear gold standards exist, a combination of 360 

methods seems advisable instead of focusing exclusively on one technique. Ultrasound-based 361 

assessments of tendon deformability on loading have grown in popularity but can provide 362 

erroneous conclusions due to several invalid assumptions and approximations typically made to 363 

simplify the experimental protocol. Most of these errors can be eliminated by appropriate 364 

measurements. 365 

 366 

Mechanobiology of fascial tissues: effects of exercise and disuse 367 

 368 

The main principles of the above ultrasound-based methodology have been implemented in 369 

numerous studies over the last 20 years to study the adaptability of human tendons to exercise 370 

and disuse.95 96  The findings convincingly show that human tendons respond to the application of 371 

chronic overloading by increasing their stiffness and to chronic unloading by decreasing their 372 

stiffness. The mechanisms underpinning these adaptations include changes in tendon size and 373 

changes in Young’s modulus. One common finding among studies is that tendon adaptations 374 

occur quickly, within weeks of mechanical loading/unloading application.97 98 Importantly, 375 

however, some studies report adaptations in tendon size but not tendon material,99  and others in 376 

tendon material but not size,97  while some report adaptations in both tendon size and material.100   377 

 378 

To study human tendon mechanobiology and explore the basis of the above distinct adaptability 379 

features, both cross-sectional and longitudinal experimental designs have often been adopted. 380 

Cross-sectional designs have been used for the following purposes: (a) to compare tendons 381 

subjected to different habitual loads due to their specific anatomical location,101  (b) to compare 382 

tendons between limbs with muscle strength asymmetry,99  (c) to compare tendons in humans 383 

with different body mass but similar habitual activities96 and (d) to compare tendons in athletes 384 

with those in sedentary individuals.100 Study designs (a), (b) and (c) support the notion that 385 

adjustments in tendon stiffness to accommodate changes in physiological loading are 386 

accomplished by adding or removing tendon material rather than altering Young’s modulus of the 387 

tendon. Importantly, the addition or removal of tendon material does not seem to always occur 388 

uniformly along the tendon, but in some regions only, which can go undetected unless the whole 389 

tendon is examined.102  In contrast to study designs (a), (b) and (c), findings from study design (d) 390 

show that improvements in Young’s modulus of the tendon may occur and account fully for, or 391 
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contribute to, the increased tendon stiffness in response to loading. Interestingly, exercise-392 

training intervention studies also report improvements in Young’s modulus of the tendon.95-97  In 393 

combination, these findings indicate that stiffening of the tendon through alteration of its material 394 

requires ‘supra-physiological’ loading features (e.g. in terms of loading magnitude, frequency 395 

and/or duration). Once this rapid adaptation occurs and the exercise becomes a habitual daily 396 

activity, alterations in tendon size might mediate any further changes in tendon stiffness. 397 

 398 

Outlook and perspectives for future research: 399 

Combining ultrasonography with dynamometry methods has now made it possible to assess in 400 

vivo human tendon plasticity under conditions of altered mechanical loading. Two important 401 

questions warrant further research. (1) What is the mechanism underpinning regional differences 402 

in tendon adaptability in terms of tendon size? Possibilities worth investigating include 403 

differences in local stress, local Young’s modulus, local blood flow and mechanotransduction 404 

sensitivity. Finite element modelling of the tendon may be an appropriate avenue to examine the 405 

first two possibilities. (2) What is the limiting factor in tendon plasticity to exercise? An intuitive 406 

answer is that the magnitude and time-course of tendon plasticity are merely determined by how 407 

much and how fast the in-series muscle force increases as the muscle adapts to the chronically 408 

increased load, but confirming this requires systematic research. 409 

 410 

Interventions for fascial tissue pathologies in sports medicine 411 

 412 

Fascial tissue dysfunction in the field of sports medicine is rarely treated surgically. Anti-413 

inflammatory drugs are used for sports-related overuse pathologies; however, they may impair 414 

regeneration and diminish tissue adaptation.24 25  Gyrase-inhibiting antibiotics often contribute to 415 

an increased likelihood of tendon injuries in sports.103  In addition, injections of platelet-rich 416 

plasma seem to be successful in some cases of tendinopathy, although efficacy remains 417 

inconclusive.67 104  Moderate evidence exists for the value of shockwave therapy and eccentric 418 

loading in tendon healing.105 106  Similarly, foam rolling (tool-assisted massage of myofascial 419 

tissues) seems to improve short-term flexibility and recovery from muscle soreness75 107 108  and 420 

decrease latent trigger point sensitivity.104  Nevertheless, the physiological mechanisms of these 421 

reported effects remain unclear although initial evidence suggests increases in arterial perfusion, 422 

enhanced fascial layer sliding and modified corticospinal excitability following treatment.109-111  423 

Finally, manual therapies, such as massage, osteopathy or Rolfing (a massage technique based on 424 

achieving symmetrical alignment of the body), are frequently used to improve fascial tissue 425 

regeneration or athletic performance, although their efficacy still remains to be validated.112 113  426 

 427 

Outlook and perspectives for future research: 428 

Hopefully, current and future improvements in assessment methodologies will generate more 429 

conclusive research regarding which treatment modalities are most promising for specific 430 

conditions. While commercial and other interests often favour the promotion of premature 431 

positive conclusions about specific fascia-related treatments, strict application of scientific rigour 432 

is essential for the development of this promising field. 433 

https://www.collinsdictionary.com/dictionary/english/massage
https://www.collinsdictionary.com/dictionary/english/symmetrical
https://www.collinsdictionary.com/dictionary/english/alignment
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  434 

Key messages 435 
 436 

 The fascial system is a three-dimensional continuum of soft, collagen-containing, loose 437 

and dense fibrous connective tissue that permeates the whole body 438 

 Non-myotendinous (myofascial) force transmission via inter- and extramuscular fascial 439 

tissues provides a relevant pathway for force transmission. Its contribution to remote 440 

exercise effects and non-local symptom manifestations in musculoskeletal disorders 441 

remains to elucidated  442 

 Excessive or prolonged loading or direct trauma to fascial tissues initiate micro and macro 443 

changes (e.g. inflammation, fibrosis, fatty changes) resulting in ongoing tissue damage  444 

 445 

 Diagnostic methods to examine fascial tissue function include bio-impedance 446 

assessments, manual palpation, indentometric measurements and imaging methods 447 

(ultrasound, elastography). As long as no clear gold standards exists, a combination of 448 

methods seems advisable instead of focusing exclusively on one technique 449 

 450 

 Future improvements in assessment methodologies will generate more conclusive 451 

research regarding which treatment modalities are most promising for specific conditions. 452 

While commercial and other interests often favour the promotion of premature positive 453 

conclusions about specific fascia-related treatments, strict application of scientific rigour 454 

is essential for the development of this promising field 455 

 456 
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Table 1. Currently used diagnostic methods to examine fascial tissue structure and function  735 

Method Assessment 

target 

Advantages  Disadvantages References   

Biopsy Histological 

properties incl. 

molecular analysis 

Permits analysis of 

tissue damage, 

infiltration of 

inflammatory cells, 

cytokines, etc. 

Invasiveness 66, 75, 77  

Bioimpedance Hydration changes High sensitivity Lacking data on reliability 

and validity for smaller 

regions 

78  

Manual 

palpation 

Stiffness, elasticity 

and shearing-

mobility of tissue 

Cost effectiveness 

Psychosocial factors 

Limited reliability 79-82  

Indentometry Stiffness and 

elasticity 

Established 

reproducibility 

Limited depth 81, 83-85  

Ultrasound 

(US) imaging 

Thickness of layers, 

tendon elongation 

Permits diagnosis of a 

fibrotic thickening (e.g. 

of a particular 

endomysium), or of 

tendon strain response 

during loading 

Difficulty in standardizing 

the exact viewing angle 

86, 88  

US with 

correlation 

software 

Relative shearing 

motion of adjacent 

layers 

Permits diagnosis of 

adhesive tissue 

connections, such as in 

chronic low back pain 

Lacking standards for 

selection of regions of 

interest 

89  

Compression 

based US 

elastography 

Stiffness Measurements possible 

at further depth than 

e.g. with indentometry 

Lack of standardization 

Frequent appearance of 

artefacts 

87  

Shear wave US 

elastography 

Stiffness Enhancement by 

propagation analysis 

permits morphological 

analysis 

Lack of standardization 91, 92  

B-mode 

ultrasonography 

Tendon structure 

and 

mechanical/material 

properties 

1) In vivo 

methodology  

2) application in 

perspective 

studies 

3) relatively 

inexpensive 

 

1) Accuracy is user- 

dependent 

2) Applicability is limited 

to superficial tendons 

mainly 

3) Limited control of any 

medio-lateral deviation of 

the tendon line of pull off 

the scanning plane   

4) Tendon slack length (ie, 

at 0% strain) and tendon 

force cannot be directly 

measured and need to be 

estimated 

5) Scanning frame rate is 

currently limited 

90, 

97,98,99,104 
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Figure legends 736 
 737 

Figure 1. Components of the fascial system. The fascial system includes large aponeuroses like 738 

the first layer of the thoracolumbar fascia (A), but also a myriad of enveloping containers around 739 

and within skeletal muscles (B) and most other organs of the body. The internal structure of 740 

fascial tissues is dominated by collagen fibers which are embedded in a semi-liquid ground 741 

substance (C). Images with friendly permission of fascialnet.com (A) and thomas-742 

stephan.com (C).  743 

 744 

Figure 2. Transmission electron microscopy reveals the close cell-ECM interaction in human 745 

skeletal muscle (musclus vastus lateralis, 25,000 x magnification) allowing a bidirectional cell-746 

ECM interaction. Myofilaments (MF) are connected by Z-lines (Z) and costameres (C) to the 747 

adjacent basal lamina (BL) and the surrounding reticular lamina (RL). Crossbriding structures 748 

(arrows) connect the Z-lines and costameres to the dense part of the basal lamina. The reticular 749 

lamina is structured by a network of collagen fibrils (CF) and additional ECM molecules, which 750 

have a close connection to the basal lamina allowing bidirectional transmission of mechanical 751 

forces. 752 

 753 

Figure 3. Factors influencing the mechanical stiffness of fascial tissues and their hypothesized 754 

impact. Up arrows symbolize a positive effect (e.g. increased cellular contractility increases 755 

stiffness), down arrows symbolize a negative effect (e.g. increased use of corticosteroids 756 

decreases stiffness) and double arrows symbolize an ambiguous association (e.g. hyaluronan 757 

decreases stiffness if mobilized by mechanical stimuli, but leads to increased stiffness if no 758 

stimuli are applied). 759 

 760 

Figure 4. Proposed timeline and mechanisms for fascial, adipose and muscle changes in the 761 

multifidus muscle after intervertebral disc lesion. Three phases, acute (top), subacute-early 762 

chronic (middle) and chronic (bottom), are characterized by different structural and inflammatory 763 

changes. TNF - Tumour Necrosis Factor; IL-1β – Interleukin-1β. 764 

 765 

Figure 5. Tendon displacement measured by B-mode ultrasound. Sonographic images of the 766 

human tibialis anterior (TA) muscle at rest (top) and in response to electrical stimulation at 75 V 767 

(middle) and 150 V (bottom). The white arrow indicates the TA tendon origin. Notice the 768 

proximal shift of the TA tendon origin upon electrical stimulation. 88  769 
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