18 research outputs found

    Human Umbilical Cord Blood Cells Restore Brain Damage Induced Changes in Rat Somatosensory Cortex

    Get PDF
    Intraperitoneal transplantation of human umbilical cord blood (hUCB) cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Finite Element Procedures

    No full text

    Selective feeding behaviour of key free-living protists:avenues for continued study

    Get PDF
    Phagotrophic protists are diverse and abundant in aquatic and terrestrial environments, making them fundamental to the transfer of matter/energy within their respective food webs. Recognising their grazing impact is essential to evaluate the role of protists in ecosystems, and this includes appreciating prey selectivity. Efforts have been made by groups and individuals to understand selective grazing behaviour by protists: many approaches and perspectives have been pursued, not all of which are compatible. This article, which is not a review, is the product of our discourse on this subject at the SAME 10 meeting. It is the work of individuals, assembled for their breadth of backgrounds, approaches, views, and expertise. Firstly, to communicate ideas and approaches, we develop a framework for selective feeding processes and suggest 6 steps: searching, contact, capture, processing, ingestion, digestion. We then separate study approaches into 2 categories: (1) those examining whole organisms at the community, population, and individual levels, and (2) those examining physiology and molecular attributes. Finally, we explore general problems associated with the field of protistan selective feeding (e.g. linking food selection into food webs and modeling). We do not present all views on any one topic, nor do we cover all topics; instead, we offer opinions and suggest avenues for continued study. Overall, this paper should stimulate further discourse on the subject and provide a roadmap for the future

    History and Sources of Co-Occurring Pesticides in an Abstraction Well Unraveled by Age Distributions of Depth-Specific Groundwater Samples

    No full text
    When groundwater-based drinking water supply becomes contaminated, the timing and source of contamination are obvious questions. However, contaminants often have diffuse sources and different contaminants may have different sources even in a single groundwater well, making these questions complicated to answer. Age dating of groundwater has been used to reconstruct contaminant travel times to wells; however, critics have highlighted that groundwater flow is often complex with mixing of groundwater of different ages. In drinking water wells, where water is typically abstracted from a large depth interval, such mixing is even more problematic. We present a way to overcome some of the obstacles in identifying the source and age of contaminants in drinking water wells by combining depth-specific sampling with age tracer modeling, particle tracking simulations, geological characterization, and contaminant properties. This multitool approach was applied to a drinking water well, where bentazon and dichlorprop contamination was found to have different pollutant sources and release histories, even though both pesticides can be associated with the same land use. Bentazon was derived from recent application to a golf course, while dichlorprop was derived from agricultural use more than 30 years ago. The advantages, limitations, and pitfalls of the proposed course of action are then further discussed

    Dipalmitoylphosphatidylcholine is not the major surfactant phospholipid species in all mammals

    No full text
    Pulmonary surfactant, a complex mixture of lipids and proteins, lowers the surface tension in terminal air spaces and is crucial for lung function. Within an animal species, surfactant composition can be influenced by development, disease, respiratory rate, and/or body temperature. Here, we analyzed the composition of surfactant in three heterothermic mammals (dunnart, bat, squirrel), displaying different torpor patterns, to determine: 1) whether increases in surfactant cholesterol (Chol) and phospholipid (PL) saturation occur during long-term torpor in squirrels, as in bats and dunnarts; 2) whether surfactant proteins change during torpor; and 3) whether PL molecular species (molsp) composition is altered. In addition, we analyzed the molsp composition of a further nine mammals (including placental/marsupial and hetero-/homeothermic contrasts) to determine whether phylogeny or thermal behavior determines molsp composition in mammals. We discovered that like bats and dunnarts, surfactant Chol increases during torpor in squirrels. However, changes in PL saturation during torpor may not be universal. Torpor was accompanied by a decrease in surfactant protein A in dunnarts and squirrels, but not in bats, whereas surfactant protein B did not change in any species. Phosphatidylcholine (PC)16:0/16:0 is highly variable between mammals and is not the major PL in the wombat, dunnart, shrew, or Tasmanian devil. An inverse relationship exists between PC16:0/16:0 and two of the major fluidizing components, PC16:0/16:1 and PC16:0/14:0. The PL molsp profile of an animal species is not determined by phylogeny or thermal behavior. We conclude that there is no single PL molsp composition that functions optimally in all mammals; rather, surfactant from each animal is unique and tailored to the biology of that animal

    Striatal metabolism and psychomotor speed as predictors of motor onset in Huntington's disease

    No full text
    The clinical diagnosis of Huntington's disease (HD) is based on the motor symptoms, although these can be preceded by cognitive and behavioral changes. Biomarker studies have shown that structural imaging modalities are useful biomarkers of HD onset, while functional imaging measures have been studied less often for this purpose. Our aim was to investigate the combined value of 18-fluorodesoxyglucose (FDG)-PET and cognitive measures as biomarkers of HD onset. Twenty-two premanifest mutation carriers of HD (PMCs) and 11 healthy controls were assessed twice with FDG-PET scan, neurological and neuropsychological assessments over a 2-year interval. Seventeen PMCs had an additional third neurological evaluation, 10 years after baseline. Disease load was defined as the probability of motor onset within 5 years. Metabolism in putamen, caudate and pallidum of PMCs was significantly lower than that of controls, at both assessments. Almost half of the PMCs had converted to manifest HD 10 years later and all converters had low average or abnormal putaminal metabolism at 2 year follow-up. In contrast, all PMCs with normal putaminal metabolism at 2 year follow-up remained premanifest during the following 8 years. Furthermore, glucose metabolism of putamen explained a substantial part of the variance in disease load. A composite score of psychomotor tests contributed significantly to the prediction model as well, while cognitive performance was comparable for PMCs and controls. We conclude that in future clinical trials a combination of psychomotor tests and putaminal glucose metabolism may be used to identify PMCs close to motor onset of HD
    corecore