348 research outputs found

    Measurement of Both Gas and Particle Velocity in Turbulent Two-Phase Flow

    Get PDF
    A laser-Doppler anemometer was used to measure the velocity of both the gas and particles in a turbulent two-phase flow for conditions when the distribution of the velocities of the two phases overlaps. The velocities from the two phases are separated by comparing the Doppler amplitude to the pedestal amplitude. Results of the measure of the gas-particle flow downstream of a nozzle mounted in a circular pipe are presented

    Three Proposed Compendia for Genesis Solar Wind Samples: Science Results, Collector Materials Characterization and Cleaning Techniques

    Get PDF
    Final Paper and not the abstract is attached. Introduction: Planetary material and cosmochemistry research using Genesis solar wind samples (including the development and implementation of cleaning and analytical techniques) has matured sufficiently that compilations on several topics, if made publically accessible, would be beneficial for researchers and reviewers. We propose here three compendia based on content, organization and source of documents (e.g. published peer-reviewed, published, internal memos, archives). For planning purposes, suggestions are solicited from potential users of Genesis solar wind samples for the type of science content and/or organizational style that would be most useful to them. These compendia are proposed as living documents, periodically updated. Similar to the existing compendia described below, the curation compendia are like library or archival finding aids, they are guides to published or archival documents and should not be cited as primary sources

    Determining the Elemental and Isotopic Composition of the preSolar Nebula from Genesis Data Analysis: The Case of Oxygen

    Get PDF
    We compare element and isotopic fractionations measured in solar wind samples collected by NASA's Genesis mission with those predicted from models incorporating both the ponderomotive force in the chromosphere and conservation of the first adiabatic invariant in the low corona. Generally good agreement is found, suggesting that these factors are consistent with the process of solar wind fractionation. Based on bulk wind measurements, we also consider in more detail the isotopic and elemental abundances of O. We find mild support for an O abundance in the range 8.75 - 8.83, with a value as low as 8.69 disfavored. A stronger conclusion must await solar wind regime specific measurements from the Genesis samples.Comment: 6 pages, accepted by Astrophysical Journal Letter

    Electron Microprobe/SIMS Determinations of Al in Olivine: Applications to Solar Wind, Pallasites and Trace Element Measurements

    Get PDF
    Electron probe microanalyser measurements of trace elements with high accuracy are challenging. Accurate Al measurements in olivine are required to calibrate SIMS implant reference materials for measurement of Al in the solar wind. We adopt a combined EPMA/SIMS approach that is useful for producing SIMS reference materials as well as for EPMA at the ~100 µg g⁻¹ level. Even for mounts not polished with alumina photoelectron spectroscopy shows high levels of Al surface contamination. In order to minimise electron beam current density, a rastered 50 × 100 µm electron beam was adequate and minimised sensitivity to small Al‐rich contaminants. Reproducible analyses of eleven SIMS cleaned spots on San Carlos olivine agreed at 69.3 ± 1.0 µg g⁻¹. The known Al mass fraction was used to calibrate an Al implant into San Carlos. Accurate measurements of Al were made for olivines in the pallasites: Imilac, Eagle Station and Springwater. Our focus was on Al in olivine; but our technique could be refined to give accurate electron probe measurements for other contamination‐sensitive trace elements. For solar wind it is projected that the Al/Mg abundance ratio can be determined to 6%, a factor of 2 more precise than the solar spectroscopic ratio

    Electron Microprobe/SIMS Determinations of Al in Olivine: Applications to Solar Wind, Pallasites and Trace Element Measurements

    Get PDF
    Electron probe microanalyser measurements of trace elements with high accuracy are challenging. Accurate Al measurements in olivine are required to calibrate SIMS implant reference materials for measurement of Al in the solar wind. We adopt a combined EPMA/SIMS approach that is useful for producing SIMS reference materials as well as for EPMA at the ~100 µg g⁻¹ level. Even for mounts not polished with alumina photoelectron spectroscopy shows high levels of Al surface contamination. In order to minimise electron beam current density, a rastered 50 × 100 µm electron beam was adequate and minimised sensitivity to small Al‐rich contaminants. Reproducible analyses of eleven SIMS cleaned spots on San Carlos olivine agreed at 69.3 ± 1.0 µg g⁻¹. The known Al mass fraction was used to calibrate an Al implant into San Carlos. Accurate measurements of Al were made for olivines in the pallasites: Imilac, Eagle Station and Springwater. Our focus was on Al in olivine; but our technique could be refined to give accurate electron probe measurements for other contamination‐sensitive trace elements. For solar wind it is projected that the Al/Mg abundance ratio can be determined to 6%, a factor of 2 more precise than the solar spectroscopic ratio

    Genesis Mission to Return Solar Wind Samples to Earth

    Get PDF
    The Genesis spacecraft, launched on 8 August 2001 from Cape Canaveral, Florida, will be the first spacecraft ever to return from interplanetary space. The fifth in NASAs line of low-cost, Discovery-class missions, its goal is to collect samples of solar wind and return them to Earth for detailed isotopic and elemental analysis. The spacecraft is to collect solar wind for over 2 years, while circling the L1 point 1.5 million km Sunward of the Earth, before heading back for a capsule-style re-entry in September 2004. After parachute deployments mid-air helicopter recovery will be used to avoid a hard landing. The mission has been in development over 10 years, and its cost, including development, mission operations, and initial sample analysis, is approximately $209 million

    The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission

    Get PDF
    International audience; The Planetary Fourier Spectrometer (PFS) for the Mars Express mission is an infrared spectrometer optimised for atmospheric studies. This instrument has a short wave (SW) channel that covers the spectral range from 1700 to 8200.0cm-1 (1.2- 5.5mum) and a long-wave (LW) channel that covers 250- 1700cm-1 (5.5- 45mum). Both channels have a uniform spectral resolution of 1.3cm-1. The instrument field of view FOV is about 1.6o (FWHM) for the Short Wavelength channel (SW) and 2.8o (FWHM) for the Long Wavelength channel (LW) which corresponds to a spatial resolution of 7 and 12 km when Mars is observed from an height of 250 km. PFS can provide unique data necessary to improve our knowledge not only of the atmosphere properties but also about mineralogical composition of the surface and the surface-atmosphere interaction. The SW channel uses a PbSe detector cooled to 200-220 K while the LW channel is based on a pyroelectric ( LiTaO3) detector working at room temperature. The intensity of the interferogram is measured every 150 nm of physical mirrors displacement, corresponding to 600 nm optical path difference, by using a laser diode monochromatic light interferogram (a sine wave), whose zero crossings control the double pendulum motion. PFS works primarily around the pericentre of the orbit, only occasionally observing Mars from large distances. Each measurements take 4 s, with a repetition time of 8.5 s. By working roughly 0.6 h around pericentre, a total of 330 measurements per orbit will be acquired 270 looking at Mars and 60 for calibrations. PFS is able to take measurements at all local times, facilitating the retrieval of surface temperatures and atmospheric vertical temperature profiles on both the day and the night side

    Hollow silica capsules for amphiphilic transport and sustained delivery of antibiotic and anticancer drugs

    Get PDF
    Hollow mesoporous silica capsules HMSC are potential drug transport vehicles due to their biocompatibility, high loading capacity and sufficient stability in biological milieu. Herein, we report the synthesis of ellipsoid shaped HMSC aspect ratio amp; 8764;2 performed using hematite particles as solid templates that were coated with a conformal silica shell through cross condensation reactions. For obtaining hollow silica capsules, the iron oxide core was removed by acidic leaching. Gas sorption studies on HMSC revealed mesoscopic pores main pore width amp; 8764;38 and a high surface area of 308.8 m2 g amp; 8722;1. Cell uptake of dye labeled HMSC was confirmed by incubating them with human cervical cancer HeLa cells and analyzing the internalization through confocal microscopy. The amphiphilic nature of HMSC for drug delivery applications was tested by loading antibiotic ciprofloxacin and anticancer curcumin compounds as model drugs for hydrophilic and hydrophobic therapeutics, respectively. The versatility of HMSC in transporting hydrophilic as well as hydrophobic drugs and a pH dependent drug release over several days under physiological conditions was demonstrated in both cases by UV vis spectroscopy. Ciprofloxacin loaded HMSC were additionally evaluated towards Gram negative E. coli bacteria and demonstrated their efficacy even at low concentrations 10 amp; 956;g ml amp; 8722;1 in inhibiting complete bacterial growth over 18 hour

    Treatment of substance abuse in dual diagnosis

    Get PDF
    Interventions for substance use–related problems are limited for individuals with intellectual disability (ID). This is problematic, as the lack of interventions can lead to substance use initiation, progression of substance use into substance use disorder, poorer outcomes of treatment, and stigmatization of individuals with dual diagnosis. Additionally, staff who work with individuals with ID and addiction treatment lack resources to effectively help substance use in individuals with ID. Nevertheless, there has been an increase in studies assessing the feasibility and outcomes of interventions for substance use and abuse in individuals with ID. This chapter reviews psychological and pharmacological interventions for individuals with dual diagnosis of substance abuse and ID
    corecore