733 research outputs found

    Towards trusted volunteer grid environments

    Full text link
    Intensive experiences show and confirm that grid environments can be considered as the most promising way to solve several kinds of problems relating either to cooperative work especially where involved collaborators are dispersed geographically or to some very greedy applications which require enough power of computing or/and storage. Such environments can be classified into two categories; first, dedicated grids where the federated computers are solely devoted to a specific work through its end. Second, Volunteer grids where federated computers are not completely devoted to a specific work but instead they can be randomly and intermittently used, at the same time, for any other purpose or they can be connected or disconnected at will by their owners without any prior notification. Each category of grids includes surely several advantages and disadvantages; nevertheless, we think that volunteer grids are very promising and more convenient especially to build a general multipurpose distributed scalable environment. Unfortunately, the big challenge of such environments is, however, security and trust. Indeed, owing to the fact that every federated computer in such an environment can randomly be used at the same time by several users or can be disconnected suddenly, several security problems will automatically arise. In this paper, we propose a novel solution based on identity federation, agent technology and the dynamic enforcement of access control policies that lead to the design and implementation of trusted volunteer grid environments.Comment: 9 Pages, IJCNC Journal 201

    Chapter 7 Overlooking women’s lived realities

    Get PDF
    Arab Spring, Transitional Justice, North Africa, Anticorruption, Colonial Legacy, international involvement, Reparations, victim participation, youth leadership, activism, racial taboo

    Adaptive state estimation for a class of uncertain nonlinear systems with output time-delays

    No full text
    International audienceIn this paper, we propose an adaptive observer for nonlinear systems with slope restricted nonlinearities, unknown parameters and delayed outputs. The delay is assumed constant and the unknown parameter is assumed piece-wise constant. Based on the Lyapunov-krasovskii approach, we show that, for sufficiently small values of the time-delay, both state estimation and parametric convergence are ensured under a condition of persistent excitation. The result is illustrated via two numerical examples

    Challenges and trends in wireless ubiquitous computing systems

    Get PDF
    In the last decade, the Internet paradigm has been evolving toward a new frontier with the emergence of ubiquitous and pervasive systems, including wireless sensor networks, ad hoc networks, RFID systems, and wireless embedded systems. In fact, while the initial purpose of the Internet was to interconnect computers to share digital data at large scale, the current tendency is to enable ubiquitous and pervasive computing to control everything anytime and at a large scale. This new paradigm has given rise to a new generation of networked systems, commonly known as Internet-of-Things or Cyber-Physical Systems

    Adaptive observers-based synchronization of a class of lur'e systems under transmission delays

    No full text
    In revision, submitted to Int. J. Control Theory and ApplicationsWe propose an adaptive observers-based synchronization approach for a class of chaotic Lur'e systems with slope-restricted nonlinearities and uncertain parameters, under transmission time-delays. The delay is assumed to be bounded and time varying and the uncertain parameters are assumed to be piece-wise constant. Based on the Lyapunov-Krasovskii approach, we show that for sufficiently short time-delays, master-slave synchronization is achieved and therefore, the uncertain parameters may be recovered. Then, the proposed approach is extended to the case of long constant time-delays by proposing a synchronization scheme based on cascade observers. Theoretical results are illustrated via two numerical examples

    Continuously-implemented sliding-mode adaptive unknown-input observers under noisy measurements

    No full text
    International audienceWe propose an estimator for nonlinear systems with unmatched unknown inputs and under measurement noise. The estimator design is based on the combination of observer design for descriptor systems, sliding-modes theory and adaptive control. The estimation of the measurement noise is achieved thanks to the transformation of the original system into a singular form where the measurement noise makes part of the augmented state. Two adaptive parameters are updated online, one to compensate for the unknown bounds on the states, the unknown inputs and the measurement noise and a second one to compensate for the effect of the nonlinearities. To join robust state estimation and unknown-inputs reconstruction, our approach borrows inspiration from sliding-mode theory however, all signals are continuously implemented. We demonstrate that both state and unknown-inputs estimation are achieved up to arbitrarily small tolerance. The utility of our theoretical results is illustrated through simulation case-studies

    A trust-based architecture for managing certificates in vehicular ad hoc networks

    Get PDF
    International audienceIn this paper, we propose a secure and distributed public key infrastructure for VANETs. It is based on an hybrid trust model which is used to determine the trust metric (Tm) of vehicles. It consists on a monitoring system processing on two aspects: the cooperation of vehicles and the legitimacy of the broadcasted data. We propose a fuzzy-based solution in order to decide about the honesty of vehicles. Then, the vehicles which are trusted (Tm = 1), also, they have at least one trusted neighbor can candidate to serve as certification authorities CAs in their clusters. In order to increase the stability of our distributed architecture, the CA candidate which has the lowest relative mobility will be elected as certification authority CA. A set of simulations is conducted. We evaluate particularly the efficiency and the stability of the clustering algorithm as a function of the speed, the average number of vehicles on the platoon and the percentage of trusted vehicles

    Cryptanalysis of a multi-chaotic systems based image cryptosystem

    Get PDF
    This paper is a cryptanalysis of a recently proposed multi-chaotic systems based image cryptosystem. The cryptosystem is composed of two shuffling stages parameterized by chaotically generated sequences. We propose and implement two different attacks which completely break this encryption scheme.Ercan Solak is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 106E143Publisher's Versio

    Breaking an orbit-based symmetric cryptosystem

    Get PDF
    We report a break for a recently proposed class of cryptosystems. The cryptosystem uses constant points of a periodic secret orbit to encrypt the plaintext. In order to break the system, it suffices to sort the constant points and find the initial fixed point. We also report breaks for modified versions of the cryptosystem. In addition, we discuss some efficiency issues of the cryptosystem.Publisher's VersionAuthor's Cop
    corecore