261 research outputs found

    Multicenter clinical evaluation of the Luminex Aries Flu A/B & RSV assay for pediatric and adult respiratory tract specimens

    Get PDF
    ABSTRACT Influenza A and B viruses and respiratory syncytial virus (RSV) are three common viruses implicated in seasonal respiratory tract infections and are a major cause of morbidity and mortality in adults and children worldwide. In recent years, an increasing number of commercial molecular tests have become available to diagnose respiratory viral infections. The Luminex Aries Flu A/B &amp; RSV assay is a fully automated sample-to-answer molecular diagnostic assay for the detection of influenza A, influenza B, and RSV. The clinical performance of the Aries Flu A/B &amp; RSV assay was prospectively evaluated in comparison to that of the Luminex xTAG respiratory viral panel (RVP) at four North American clinical institutions over a 2-year period. Of the 2,479 eligible nasopharyngeal swab specimens included in the prospective study, 2,371 gave concordant results between the assays. One hundred eight specimens generated results that were discordant with those from the xTAG RVP and were further analyzed by bidirectional sequencing. Final clinical sensitivity values of the Aries Flu A/B &amp; RSV assay were 98.1% for influenza A virus, 98.0% for influenza B virus, and 97.7% for RSV. Final clinical specificities for all three pathogens ranged from 98.6% to 99.8%. Due to the low prevalence of influenza B, an additional 40 banked influenza B-positive specimens were tested at the participating clinical laboratories and were all accurately detected by the Aries Flu A/B &amp; RSV assay. This study demonstrates that the Aries Flu A/B &amp; RSV assay is a suitable method for rapid and accurate identification of these causative pathogens in respiratory infections.</jats:p

    Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification

    Get PDF
    The substrate fluorescein-tyramide was combined with oligonucleotide probes directly labeled with horseradish peroxidase to improve the sensitivity of in situ hybridization of whole fixed bacterial cells. Flow cytometry and quantitative microscopy of cells hybridized by this technique showed 10- to 20-fold signal amplifications relative to fluorescein-manolabeled probes. The application of the new technique to the detection of natural bacterial communities resulted in very bright signals; however, the number of detected cells was significantly lower than that detected with fluorescently monolabeled, rRNA-targeted oligonucleotide probes

    Comparison of the Panther Fusion and BD MAX GBS Assays for Detection of Group B Streptococcus in Prenatal Screening Specimens.

    Get PDF
    Streptococcus agalactiae, or Group B Streptococcus (GBS) is the cause of early and late-onset GBS disease in neonates and can present as septicemia, meningitis, and pneumonia. Our objective was to compare the performance of two FDA-approved nucleic acid amplification tests (NAATs), the Panther Fusion and BD MAX™ systems, for detection of group B Streptococcus (GBS) in vaginal-rectal screening specimens. A total of 510 vaginal-rectal prepartum specimens were tested simultaneously in both NAATs following broth enrichment. Assay agreement was calculated using the kappa statistics. Overall agreement between assays was 99.0% (505/510; 95% CI: 0.951 to 0.997; kappa = 0.974). Discordant results were re-tested with both assays and by standard culture. The assays were also compared for workflow characteristics, including time to first results (TFR), total turnaround time (TAT), number of return visits to load additional specimens, and hands-on time (HoT).Using a standard run size of 60 specimens/day, the Panther Fusion assay had a longer time to TFR (2.4 vs. 2.0 hours), but showed a shorter overall TAT for all 60 samples (3.98 vs. 7.18 hours) due to an increased initial sample loading capacity, required less labor (35.0 vs. 71.3 sec/sample) and fewer return visits for loading additional specimens (0 vs. 2). The Panther Fusion system also had a larger sample loading capacity (120 vs. 24 samples) and greater 8-hour throughput (335 vs. 96 samples). In summary, the Panther Fusion GBS assay has comparable clinical performance to the BD MAX GBS assay, but provides a faster TAT, less HoT, and higher throughput

    Diversity of Rhodopirellula and related planctomycetes in a North Sea coastal sediment employing carB as molecular marker.

    Get PDF
    Rhodopirellula is an abundant marine member of the bacterial phylum Planctomycetes. Cultivation studies revealed the presence of several closely related Rhodopirellula species in European coastal sediments. Because the 16S rRNA gene does not provide the desired taxonomic resolution to differentiate Rhodopirellula species, we performed a comparison of the genomes of nine Rhodopirellula strains and six related planctomycetes and identified carB, coding for the large subunit of carbamoylphosphate synthetase, as a suitable molecular marker. In this study, we investigated the diversity of Rhodopirellula in coastal intertidal surface sediments of Sylt island, North Sea, using the 16S rRNA and carB genes as molecular markers. The carB clone and pyrosequencing libraries revealed the presence of 12 species of Rhodopirellula and of 66 species in closely related undescribed genera, a diversity that was not detected with a 16S rRNA gene library. This study demonstrates that the carB gene is a powerful molecular marker for detecting Rhodopirellula species in the environment and may be used for the taxonomic evaluation of new strains

    Automated real-time collection of pathogen-specific diagnostic data: Syndromic infectious disease epidemiology

    Get PDF
    © Lindsay Meyers, Christine C Ginocchio, Aimie N Faucett, Frederick S Nolte, Per H Gesteland, Amy Leber, Diane Janowiak,. Background: Health care and public health professionals rely on accurate, real-time monitoring of infectious diseases for outbreak preparedness and response. Early detection of outbreaks is improved by systems that are comprehensive and specific with respect to the pathogen but are rapid in reporting the data. It has proven difficult to implement these requirements on a large scale while maintaining patient privacy. Objective: The aim of this study was to demonstrate the automated export, aggregation, and analysis of infectious disease diagnostic test results from clinical laboratories across the United States in a manner that protects patient confidentiality. We hypothesized that such a system could aid in monitoring the seasonal occurrence of respiratory pathogens and may have advantages with regard to scope and ease of reporting compared with existing surveillance systems. Methods: We describe a system, BioFire Syndromic Trends, for rapid disease reporting that is syndrome-based but pathogen-specific. Deidentified patient test results from the BioFire FilmArray multiplex molecular diagnostic system are sent directly to a cloud database. Summaries of these data are displayed in near real time on the Syndromic Trends public website. We studied this dataset for the prevalence, seasonality, and coinfections of the 20 respiratory pathogens detected in over 362,000 patient samples acquired as a standard-of-care testing over the last 4 years from 20 clinical laboratories in the United States. Results: The majority of pathogens show influenza-like seasonality, rhinovirus has fall and spring peaks, and adenovirus and the bacterial pathogens show constant detection over the year. The dataset can also be considered in an ecological framework; the viruses and bacteria detected by this test are parasites of a host (the human patient). Interestingly, the rate of pathogen codetections, on average 7.94% (28,741/362,101), matches predictions based on the relative abundance of organisms present. Conclusions: Syndromic Trends preserves patient privacy by removing or obfuscating patient identifiers while still collecting much useful information about the bacterial and viral pathogens that they harbor. Test results are uploaded to the database within a few hours of completion compared with delays of up to 10 days for other diagnostic-based reporting systems. This work shows that the barriers to establishing epidemiology systems are no longer scientific and technical but rather administrative, involving questions of patient privacy and data ownership. We have demonstrated here that these barriers can be overcome. This first look at the resulting data stream suggests that Syndromic Trends will be able to provide high-resolution analysis of circulating respiratory pathogens and may aid in the detection of new outbreaks

    Competition between Nitrospira spp. and Nitrobacter spp. in nitrite-oxidizing bioreactors

    Get PDF
    In this work the question was addressed if in nitrite-oxidizing activated sludge systems the environmental competition between Nitrobacterspp. and Nitrospira spp., which only recently has been discovered to play a role in these systems, is affected by the nitrite concentrations. Two parallel chemostats were inoculated with nitrifying-activated sludge containing Nitrospira and operated under identical conditions. After addition of Nitrobacter to both chemostats, the nitrite concentration in the influent of one of the chemostats was increased such that nitrite peaks in the bulk liquid of this reactor were detected. The other chemostat served as control reactor, which always had a constant nitrite influent concentration. The relative cellular area (RCA) of Nitrospira and Nitrobacter was determined by quantitative fluorescence in situ hybridization (FISH). The nitrite perturbation stimulated the growth of Nitrobacter while in the undisturbed control chemostat Nitrospira dominated. Overall, the results of this experimental study support the hypothesis that Nitrobacter is a superior competitor when resources are abundant, while Nitrospira thrive under conditions of resource scarcity. Interestingly, the dominance of Nitrobacter over Nitrospira, caused by the elevated nitrite concentrations, could not be reverted by lowering the available nitrite concentration to the original level. One possible explanation for this result is that when Nitrobacter is present at a certain cell density it is able to inhibit the growth of Nitrospira. An alternative explanation would be that the length of the experimental period was not long enough to observe an increase of the Nitrospira population. (c) 2006 Wiley Periodicals, Inc

    Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology

    Get PDF
    Chitin is a promising soil amendment for improving soil quality, plant growth, and plant resilience. The objectives of this study were twofold. First, to study the effect of chitin mixed in potting soil on lettuce growth and on the survival of two zoonotic bacterial pathogens, Escherichia colt O157:H7 and Salmonella enterica on the lettuce leaves. Second, to assess the related changes in the microbial lettuce rhizosphere, using phospholipid fatty acid (PLFA) analysis and amplicon sequencing of a bacterial 16S rRNA gene fragment and the fungal ITS2. As a result of chitin addition, lettuce fresh yield weight was significantly increased. S. enterica survival in the lettuce phyllosphere was significantly reduced. The E. coli O157:H7 survival was also lowered, but not significantly. Moreover, significant changes were observed in the bacterial and fungal community of the lettuce rhizosphere. PLFA analysis showed a significant increase in fungal and bacterial biomass. Amplicon sequencing showed no increase in fungal and bacterial biodiversity, but relative abundances of the bacterial phyla Acidobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Proteobacteria and the fungal phyla Ascomycota, Basidiomycota, and Zygomycota were significantly changed. More specifically, a more than 10-fold increase was observed for operational taxonomic units belonging to the bacterial genera Cellvibrio, Pedobacter, Dyadobacter, and Streptomyces and to the fungal genera Lecanicillium and Mortierella. These genera include several species previously reported to be involved in biocontrol, plant growth promotion, the nitrogen cycle and chitin degradation. These results enhance the understanding of the response of the rhizosphere microbiome to chitin amendment. Moreover, this is the first study to investigate the use of soil amendments to control the survival of S. enterica on plant leaves

    Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon

    Get PDF
    Two biofilmreactors operated with hydraulic retention times of 0.8 and 5.0 h were used to study the links between population dynamics and reactor operation performance during a shift in process operation from pure nitrification to combined nitrification and organic carbon removal. The ammonium and the organic carbon loads were identical for both reactors. The composition and dynamics of the microbial consortia were quantified by fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes combined with confocal laser scanning microscopy, and digital image analysis. In contrast to past research, after addition of acetate as organic carbon nitrification performance decreased more drastically in the reactor with longer hydraulic retention time. FISH analysis showed that this effect was caused by the unexpected formation of a heterotrophic microorganism layer on top of the nitrifying biofilm that limited nitrifiers oxygen supply. Our results demonstrate that extension of the hydraulic retention time might be insufficient to improve combined nitrification and organic carbon removal in biofilm reactors.Ministério da Ciência, Tecnologia e Ensino Superior. Fundação para a Ciência e a Tecnologia (FCT) - PRAXIS XXI BD/15943/98). Deutscher Akademischer Austauschdienst (A/99/06961). European Comission - T.M.R. BioToBio project. Deutsche Forschungsgemeinschaft

    Molecular characterization of the symbionts associated with marine nematodes of the genus Robbea‡

    Get PDF
    Marine nematodes that carry sulfur-oxidizing bacteria on their cuticle (Stilbonematinae, Desmodoridae) migrate between oxidized and reduced sand layers thereby supplying their symbionts with oxygen and sulfide. These symbionts, in turn, constitute the worms' major food source. Due to the accessibility, abundance and relative simplicity of this association, stilbonematids may be useful to understand symbiosis establishment. Nevertheless, only the symbiont of Laxus oneistus has been found to constitute one single phylotype within the Gammaproteobacteria. Here, we characterized the symbionts of three yet undescribed nematodes that were morphologically identified as members of the genus Robbea. They were collected at the island of Corsica, the Cayman Islands and the Belize Barrier Reef. The surface of these worms is covered by a single layer of morphologically undistinguishable bacteria. 18S rDNA-based phylogenetic analysis showed that all three species belong to the Stilbonematinae, although they do not form a distinct cluster within that subfamily. 16S rDNA-based analysis of the symbionts placed them interspersed in the cluster comprising the sulfur-oxidizing symbionts of L. oneistus and of marine gutless oligochaetes. Finally, the presence and phylogeny of the aprA gene indicated that the symbionts of all three nematodes can use reduced sulfur compounds as an energy source
    corecore