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Abstract

Two biofilm reactors operated with hydraulic retention times of 0.8 and 5.0 h were used to study the links between

population dynamics and reactor operation performance during a shift in process operation from pure nitrification to
combined nitrification and organic carbon removal. The ammonium and the organic carbon loads were identical for
both reactors. The composition and dynamics of the microbial consortia were quantified by fluorescence in situ

hybridization (FISH) with rRNA-targeted oligonucleotide probes combined with confocal laser scanning microscopy,
and digital image analysis. In contrast to past research, after addition of acetate as organic carbon nitrification
performance decreased more drastically in the reactor with longer hydraulic retention time. FISH analysis showed that
this effect was caused by the unexpected formation of a heterotrophic microorganism layer on top of the nitrifying

biofilm that limited nitrifiers oxygen supply. Our results demonstrate that extension of the hydraulic retention time
might be insufficient to improve combined nitrification and organic carbon removal in biofilm reactors.r 2002 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The competition between heterotrophic and nitrifying
bacteria for substrates (oxygen and ammonia) and space
in biofilms is of major practical importance and thus has
been the subject of several previous studies (for example

[1–3]). According to these investigations, competition in
biofilms results in a stratified biofilm structure, the fast
growing heterotrophic bacteria being placed in the outer

layers, where both substrate concentration and detach-

ment rate are high, while the slow growing nitrifying
bacteria stay deeper inside the biofilm. Thus a hetero-

trophic layer can form above the nitrifiers in the biofilm,
which constitutes a disadvantage to them when the bulk
liquid oxygen concentration is low. In this case oxygen
limitation resulting from consumption and resistance to

mass transfer within the heterotrophic layer affects the
nitrification performance negatively. As long as the bulk
oxygen concentration is high enough to preclude its

depletion in the biofilm, however, the heterotrophic
layer can also have a positive effect on the nitrifiers by
protecting them from detachment [4].

One possible approach to minimize the competition of
heterotrophs and nitrifiers for oxygen is their spatial
separation into a nitrifying biofilm population and a
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heterotrophic population in suspension. This separation
can be achieved by extending the reactor’s hydraulic

retention time. At comparatively long hydraulic reten-
tion times, the fast growing heterotrophic microorgan-
isms (with reciprocal maximum specific growth rates

smaller than the selected hydraulic retention time) grow
mainly in suspension while the slow growing nitrifiers
form biofilms [2]. However, in this study the reactor was
operated at a high oxygen concentration of 6mg l�1, a

condition which did also allow full nitrification in a
conventional biofilm reactor (nitrifiers and heterotrophs
in the biofilm) [2].

Reactors with a spatial separation of heterotrophic
and nitrifying activity for the treatment of effluents with
a high chemical oxygen demand (COD)/NH4

+-N ratio

can be very attractive for future practical applications if
(i) it can be demonstrated that these reactors allow
complete nitrification at a relatively low dissolved

oxygen concentration and if (ii) the energy savings in
aeration relatively to the traditional process compensate
the investment costs in the construction of a bigger
reactor required due to its longer retention time. So far

the effects of influent composition and operational
conditions were studied with respect either to total
reactor performance (macroscale studies) or to biofilm

composition and structure (microscale studies), but
hardly to both simultaneously (for example [3]).
The research subjects of this study were the effects of

different hydraulic retention times and changes in the
organic carbon dosing on the population dynamics of
nitrifying biofilm reactors operated at around 2mg l�1

dissolved oxygen. The specific objectives were: (i) to

identify and quantify nitrifying and heterotrophic bacter-
ia in the biofilm and in suspension using a set of rRNA-
targeted oligonucleotide probes for fluorescence in situ

hybridization (FISH), (ii) to correlate changes in micro-
bial community composition in the biofilm and suspen-
sion with reactor performance during a shift from pure

nitrification to combined nitrification and organic carbon
removal, and (iii) to asses the recovery of the nitrification
process after a shift back to pure nitrification.

2. Materials and methods

2.1. Biofilm reactors

Two laboratory-scale circulating bed reactors (CBR)

of 1.2 l each [5] were employed for this study. This type
of airlift reactor has a rectangular geometry of 310mm
height and 60mm� 60mm cross-section and is sepa-

rated in an up-flow aerated section and a down-flow
non-aerated one by a vertical wall (Fig. 1). High density
polyethylene granulate with a particle size of 1mm and a

density of 731 kgm�3 was used as support material for
biofilm growth. The superficial air velocity in both

reactors (defined as the air flow rate divided by the

aerated reactor cross-section) was set at 0.003m s�1. The
temperature was maintained at 301C, and the pH was
kept at 7.5 by adding sodium hydroxide (1M). The

experimental protocol included 4 phases (Fig. 2). The
corresponding experimental conditions are summarized
in Table 1.
Phase I. A CBR (hereafter reactor R0) was filled with

nitrifying biofilm particles (23 volume percent) obtained
from a nitrifying circulating bed reactor, which was
maintained at identical operating conditions. The

biofilm particles had been stored at 41C for 90 days
prior to inoculation of reactor R0. An ammonium
solution was supplied continuously (N operation mode),

with a retention time of 0.70 h. During phase I a stable
nitrifying biofilm was established.
Phase II. Half of the biofilm particles from reactor R0

were transferred to a second identical reactor. Both
CBRs (hereafter reactors R1 and R2) were operated
simultaneously with retention times of 0.8 h for reactor
R1 and 5.0 h for reactor R2. The ammonium load

supplied to each reactor was approximately half of the
value used in phase I in order to maintain a constant
NH4

+-N load to biomass ratio (0.46 kg kg�1 d�1), and

still no organic carbon was added (N operation mode).
Phase III. Acetate as an organic carbon source was

supplied to reactors R1 and R2 at the same COD/NH4
+-

N mass ratio (C+N operation mode) in order to
investigate the effect of organic carbon on the nitrifica-
tion performance of reactors operating at different
retention times.

Phase IV. Discontinuation of the supply of acetate to
reactors R1 and R2 in order to study the recovery of the
nitrification process (N operation mode).

Fig. 1. Schematic diagram of continuous circulating bed

reactor set-up.
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Phases I, II and IV are characteristic of a pure

nitrification process, while phase III corresponds to a
combined nitrification and organic carbon removal
process.

2.2. Media

During the experimental phases I, II and IV (N
operation mode) 3.4mlmin�1 of an ammonium medium

was delivered to each reactor. The medium contained
(NH4)2SO4 (0.59 g l

�1), NaHCO3 (0.19 g l
�1), KH2PO4

(0.06 g l�1), CaCl2 2H2O (0.014 g l
�1) and trace elements.

In reactors R0 and R1, also 15.9mlmin
�1 of deionized

water was added to the reactors to obtain the desired
hydraulic retention time. During phase III (C+N
operation mode) 1.7mlmin�1 of a sterilized acetate

solution (CH3COONa 3H2O, 0.71 g l
�1) was added

separately to reactors R1 and R2. In order to maintain
the retention time in both reactors constant, the

ammonium medium’s volumetric flow rate was reduced
to half, and its concentration was doubled.

2.3. Overall kinetics

The macroscale reactor performance was evaluated
from effluent samples filtered with 0.22 mm membrane

filters. COD, ammonia plus ammonium, nitrite and
nitrate were determined photometrically (LCK, Dr.
Lange). Biofilm and suspended biomass total solids

were measured according to APHA [6] using 0.22 mm
membrane filters. Prior to this analysis, the biofilm was
detached from the support material by an ultrasonic
homogenizer (Bandelin electronics D-1000, Berlin)

treatment (120 s at 50W). The dissolved oxygen
concentration was measured with an oxygen electrode
(WTW, model Oxi 340-A).

2.4. Fluorescence in situ hybridization, microscopy and

quantification of probe-targeted bacteria

Microbial population dynamics in biofilm particles

and suspended biomass was evaluated using FISH with
rRNA-targeted oligonucleotide probes. Samples 1–6

Table 1

Operating conditions and performance of reactors R0, R1, and R2. For all parameters average values are given for the different phases

of operation

Phase/

mode of

operation

Influent NH4
+-N load NH4

+-N

removal

(%)

COD load COD

removal

(%)

COD/N

applied

(g g�1)

NH4
+-N COD (kgm�3) Applied Removed

(kgm�3 d�1)

Applied Removed

(kgm�3 d�1)

Reactor R0 hydraulic retention time of 0.7 h

I N 0.037 Fa 1.26 1.20 95 F F F F

Reactor R1 hydraulic retention time of 0.8 h

II N 0.020 0.01 0.61 0.60 98 0.33 0.04 12 0.53

III C+N 0.022 0.03 0.65 0.45 69 0.85 0.61 72 1.30

IV N 0.019 0.01 0.57 0.51 90 0.17 0.05 29 0.30

Reactor R2 hydraulic retention time of 5.0 h

II N 0.100 0.02 0.48 0.48 100 0.10 0.04 40 0.21

III C+N 0.109 0.14 0.53 0.53-0 100-0 0.68 0.61 90 1.28

IV N 0.117 0.02 0.56 0.53 94 0.08 0.05 63 0.14

aF=not determined.

Fig. 2. Schematic diagram describing the experimental phases. The arrows indicate biofilm and suspended biomass sampling times.
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(Fig. 2) were taken from the reactors and immediately
fixed with paraformaldehyde. During phases I and II (N
operation) only biofilm was sampled since the suspended

biomass concentration was very low, while during phase
III (acetate addition) both biofilm and suspended
biomass samples were taken.
In situ characterization of microbial populations

followed a top to bottom approach (Fig. 3). First the
samples were hybridized with a probe set (EUB338,
EUB338-II, EUB338-III) designed to target almost all

bacteria [7], then with previously published group
specific probes (Fig. 3; [8,9]). The ammonia-oxidizing
and nitrite-oxidizing bacteria were identified using

previously published probes (Fig. 3; [10–14]).
Oligonucleotide probes were purchased as derivatives

labeled with the fluorescent dyes Cy3, Cy5, and 5(6)-

carboxyfluorescein-N-hydroxysuccinimide-ester
(FLUOS), respectively (Interactiva, Ulm, Germany).
FISH was performed using the hybridization and
washing buffers as described by Manz et al. [8]. A Zeiss

LSM 510 laser scanning confocal microscope (Zeiss,
Jena, Germany) was used for image acquisition. For
quantification of probe-targeted bacteria, simultaneous

hybridizations were performed with Cy3 labeled specific
probes and the FLUOS labeled bacterial probe set. The
relative biovolume defined as the ratio between the area

of probe-targeted bacteria to the area of all bacteria
detectable by FISH was determined for each probe in 20
randomly recorded confocal images (thickness 1mm)
using the procedure described by Schmid et al. [15].

Biofilm thickness was determined for fresh, unfixed

biofilm samples which were stained with a 0.25 g l�1

fluorescein isothiocianate solution for 3 h at room
temperature, using CLSM optical sectioning in the

sagittal (xz) direction.

2.5. Comparative sequence analyses of the amoA gene

High resolution analyses of ammonia-oxidizer diver-

sity in reactor R0 was performed using the gene
encoding the catalytic subunit of the ammonia-mono-
oxygenase enzyme (amoA) as a marker. Amplification,

cloning, sequencing and phylogenetic analyses of the
biofilm-derived amoA fragments was performed as
described by Purkhold et al. [16].

3. Results

3.1. Reactor performance

3.1.1. Phase I
One of the main drawbacks of biological nitrification

processes is the requirement of a long start-up period.
By using biofilm particles as inoculum, the start-up
period of reactor R0 in phase I could be reduced to 4

days after which the ammonium removal efficiency had
reached 95%. Subsequently, R0’s biofilm particles were
split between reactors R1 and R2 to ensure that both

reactors had the same original microbial population
composition.

Fig. 3. Specificity of the rRNA-targeted oligonucleotide probes used for in situ identification of nitrifiers and heterotrophic bacteria.
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3.1.2. Phases II to IV
Fig. 4 (A–D) depicts the performance of reactors R1

and R2 operated with retention times of 0.8 and 5.0 h,
respectively, during pure nitrification (phases II and IV)
and combined nitrification and organic carbon removal

(phase III). Tables 1 and 2 summarize the experimental
results obtained during reactors operation and the
characterization of biofilm and suspended biomass.
Though acetate as organic carbon source was only

added during phase III, there was a certain background
COD in the influent during phases I, II and IV (Table 1;
Figs. 4B and D) deriving from oxidizable matter in the

deionized water source. However, during these phases
maximal 63% of the incoming COD was removed
demonstrating that a significant fraction of these

compounds were not degraded in the reactors.

During phase II, both reactors had a stable perfor-
mance, no nitrite accumulation was observed and the

NH4
+-N effluent concentration was below 1.0mg l�1

corresponding to an ammonium removal efficiency
higher than 95%. The biofilm characterization at the

end of phase II showed similar biofilm thickness (41 and
42 mm), and biofilm mass concentration (2.48 and
2.43 kgm�3) in reactors R1 and R2.
Shortly after the addition of acetate to reactor R1

(start of phase III), the ammonium removal rate
decreased from 0.65 to 0.45 kgm�3 d�1 (69%) and
hereafter, was constant (Fig. 4A). Due to a mechanical

problem in the ammonium dosing pump, reactor R1
received an ammonium overload 10 days after the start
of phase III (gray area in Fig. 4A). The ammonium

removal rate, however, remained constant. In reactor R2

Fig. 4. Time changes of NH4
+-N, COD and oxygen during operation of reactors R1 and R2 with pure nitrification (phases II and IV)

and combined nitrification and organic carbon removal (phase III). Closed symbols correspond to influent concentrations and open

symbols to effluent concentrations. *Corresponds to oxygen concentrations.
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the ammonium removal continuously decreased to zero
within 50 days (Fig. 4C), while the dissolved oxygen
concentration simultaneously increased (Fig. 4B). A

constant COD removal rate of 0.61 kgm�3 d�1 was
reached within 5 days in both reactors (Figs. 4B and D)
and no nitrite accumulation was observed during the

entire phase III. The increase of biofilm thickness and
mass after carbon addition was more pronounced in
reactor R2 than in R1 (Table 2).
The amount of biomass found in the reactors during

phase III was by a factor of 10 to 40 higher than the
value expected for theoretical equilibrium between
bacteria growth rate and dilution rate (Table 2). This

inconsistency was obviously caused by an accumulation
of mostly heterotrophic biomass in the reactors’ bottom
and effluent tubes increasing the actual sludge retention

time considerably. In reactor R2 this effect was
supported by the lower hydraulic retention time, leading
to a higher biomass accumulation than in R1. The
accumulated biomass was removed once per week and

included in the samples for suspended solids quantifica-
tions and FISH analyses of suspended cells.
After the discontinuation of acetate addition (phase

IV) the ammonium removal in both reactors recovered
and after a period of 14 days approx. 90% of the influent
ammonium load was nitrified. In reactor R2 the

dissolved oxygen concentration decreased back to the
value at the beginning of phase III.

3.2. Diversity of nitrifying bacteria in the reactors

The ammonia-oxidizing cells in all biofilm samples
could be labeled simultaneously with probes BET42a,

Nso1225 and Nso190. No ammonia-oxidizers belonging
to the Nitrosospira-cluster were detected. A fraction of

the ammonia-oxidizing population was detectable with
probe NEU, while Nitrosococcus mobilis was absent.
The NEU-positive subpopulation of ammonia-oxidizers

is most likely affiliated with the Nitrosomonas europaea/
eutropha group [17]. Comparative sequence analyses of
amoA clones derived from the biofilm of reactor R0
independently confirmed the presence of two different
groups of ammonia-oxidizers (Fig. 5). One amoA
sequence cluster is closely related to Nitrosomonas
europaea, most likely representing the NEU-positive

ammonia-oxidizers, while the other amoA cluster is not
closely related with any described ammonia-oxidizer
reference strain. In both reactors the nitrite-oxidizing

cells in the biofilm were affiliated with the genus
Nitrospira during all phases of operation. Members of
the genus Nitrobacter were only detected in the biofilm

from reactor R2 (5.0 h retention time) during operation
with acetate addition (Table 3).

3.3. Diversity of heterotrophic bacteria in the
reactors

The heterotrophic bacteria present in the biofilm of
reactor R2 were Proteobacteria of the alpha- and beta-
subclasses while in reactor R1 only beta-subclass
Proteobacteria could be detected (Table 3). In both

reactors the microbial populations in the suspended
biomass during phase III were Proteobacteria of the
alpha-, beta- and gamma-subclasses and bacteria

belonging to Cytophaga-Flavobacterium-cluster (Table 4).
The dominating microbial populations both in biofilm

and suspended biomass during combined organic

carbon and ammonia oxidation belong to the beta-
subclass of Proteobacteria. Concerning the two reactor

Table 2

Characterization of biofilm and suspended biomass in reactors R0, R1, and R2 during the different phases of operation. Values listed in

the table are the average 795% confidence interval

Mode of operation/

sample

Biofilm mass per

reactor volume (kgm�3)

Suspended solids

concentration (kgm�3)

Biofilm thickness

(mm)

Reactor R0 hydraulic retention time of 0.7 h

N 3 2.7070.80 Fa 3375

Reactor R1 hydraulic retention time of 0.8 h

N 4 2.4870.37 F 4172
C+N 5 2.4970.37 F F
C+N 6 2.5470.41 0.4670.01 4473

Reactor R2 Hydraulic retention time of 5.0 h

N 4 2.4370.40 F 4273
C+N 5 2.7270.40 F F
C+N 6 3.6370.38 0.6170.04 5675

aF=not determined.
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operation modes (N and C+N operation) the major
difference is that during pure nitrification all beta-

subclass Proteobacteria were ammonia-oxidizers, while
during acetate dosing an additional presumably hetero-
trophic beta-subclass population developed. With re-

spect to the different hydraulic retention times the major
difference is a presumably heterotrophic alpha-subclass
Proteobacteria population that occurred during pure
nitrification only in reactor R2 biofilm and disappeared

after introduction of acetate.

3.4. Population dynamics in biofilm and suspended
biomass

Values for each probe’s targeted-bacteria are depicted

in Table 3 for biofilm and in Table 4 for suspended
biomass. The relative biovolumes of the different
microbial populations (determined by FISH) were

normalized by taking into account the differences in
biomass (measured as dry weight) in the different
reactors and samples. The FISH biovolume percentages

for the sample with the highest biomass per reactor
volume (sample 6) were kept unchanged and the FISH

percentages of the other samples were reduced according
to the biomass differences.

The fraction of the heterotrophic beta-Proteobacteria
population (HET) present in the biofilm of reactors R1
and R2 can be determined as follows:

ðAreaBET42aÞHET ¼ AreaBET42a �AreaNso1225: ð1Þ

Simultaneous hybridization of biofilm samples with
probes ALF1b and Ntspa662 designed for specific
detection of the alpha-subclass of Proteobacteria and

the genus Nitrospira, respectively, demonstrated that
members of the genus Nitrospira are non-specifically
targeted by probe ALF1b. Consistent with this finding, a

recent data base inspection demonstrated that Nitros-
pira-like 16S rRNA-sequences retrieved from waste-
water treatment plants possess the full match target site

of probe ALF1b. Consequently, Nitrospiras have to be
included in the list of non-alpha-subclass Proteobacteria
targeted by probe ALF1b [8]. The relative biovolume
labeled with probe ALF1b was higher than the one

labeled with probe Ntspa662 in biofilm samples taken
from reactor R2, except for the last biofilm sample
during phase III (Table 3). This demonstrates that an

ALF1b-positive population not related to Nitrospira
appeared in the biofilm when the hydraulic retention
time changed from 0.8 to 5.0 h, corresponding to the

transition from reactor R0 to reactor R2 (phase IIFN
operation mode), and disappeared after the operation of
reactor R2 with acetate for 50 days (phase IIIFC+N

operation mode).
The fraction of the alpha-Proteobacteria population

(HET) developed in the biofilm from reactor R2 during
pure nitrification (phase II) can be estimated as follows:

ðAreaALF1bÞHET¼ AreaALF1b �AreaNtspa662: ð2Þ

The fraction of biofilm and suspended biomass bacteria
identified with specific gene probes (F) in relation to all

bacteria (EUB338 probe set) was calculated as listed
below:
Biofilm samples

AreaALF1bEAreaNtspa662 ) F ¼ AreaBET42a þAreaNtspa662;

ð3Þ

AreaALF1b> AreaNtspa662 ) F ¼ AreaBET42a þAreaALF1b:

ð4Þ

Suspended biomass samples

F ¼ AreaALF1b þAreaBET42a þAreaGAM42a þAreaCF319a:

ð5Þ

The population dynamics of nitrifiers and hetero-

trophs in the biofilm and suspended biomass from
reactors R0, R1 and R2 during the different phases of
operation is depicted in Fig. 6. For most biofilm and

suspension samples, more than 80% of the bacteria
detectable by the EUB338 probe set could simulta-

Fig. 5. Phylogenetic FITCH tree reflecting the relationships of

the ammonia-oxidizers in reactor R0 based on amoA sequences.

The scale bar indicates the number of expected amino acid

substitutions per site per unit of branch length. Numbers in

brackets indicate the number of clones with almost identical

sequences (>99% amino acid sequence similarity) which were

retrieved from the reactor.
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neously be classified by at least one of the more specific
probes applied (Tables 3 and 4; Eqs. 3–5). However, this

does not hold true for the biofilm and suspended

biomass samples taken from reactor R1 during the
accidental overloading period with ammonium (sample

5). In this sample 41% of the biofilm bacteria and 24%

Table 3

Microbial community composition of reactors R0, R1 and R2 biofilm during the different phases of operation
a

Sample/reactor NF Oligonucleotide probes F

ALF1b BET42a Nso1225 NEU Ntspa662 NIT3

Phase IFN removal

1 R0 0.74 39 39 25 38 0 105

F (5374) (5374) (3473) (5274) (0)

2 R0 F F F (5675) (3075) 0 F
3 R0 0.74 20 41 41 19 20 0 82

(2773) (5574) (5574) (2673) (2773) (0)

Phase IIFN removal

4 R1 0.68 21 30 30 16 23 0 78

(3173) (4576) (4576) (2476) (3375) (0)

R2 0.67 35 21 21 14 27 0 83

(5273) (3175) (3175) (2173) (4172) (0)

Phase IIIFC+N removal

5 R1 0.68 12 26 19 12 14 0 59

(1873) (3975) (2773) (1773) (2172) (0)

R2 0.75 30 29 21 19 23 0 80

(4077) (3975) (2877) (2575) (3076) (0)

6 R1 0.70 24 34 21 5 22 0 81

(3476) (4978) (3074) (772) (3275) (0)

R2 1.00 29 60 0 0 31 3 94

(2976) (6074) (0) (0) (3176) (371)

aThe relative biovolumes of probe-defined bacterial populations (values in brackets) and the respective normalized values in regard

to the biomass content of the samples (bold values) are given in columns 3–8. No normalized values are given for sample 2 since the

biomass content was not determined for this sample. The fraction of bacteria detectable with the bacterial probe set, which were

identified with specific oligonucleotide probes, is given in column 9. Values listed in the table are the average percentage 795%
confidence interval. For all biofilm samples no signals were observed with probes specific for the Cytophaga-Flavobacterium-cluster

(CF319a) and the gamma-subclass of Proteobacteria (GAM42a), respectively. NF=normalization factor;F=not determined.

Table 4

Microbial community composition of reactors R1 and R2 suspended biomass during combined nitrification and organic carbon

removal (columns 3–6)a

Sample/reactor NF Oligonucleotide probes F

ALF1b BET42a GAM42a CF319a

Phase IIIFC+N removal

5 R1 0.18 2.2 11.5 0 0.2 76

(1271) (6472) (0) (170)
R2 0.17 1.6 14 0.5 0.9 99

(1071) (8171) (370) (571)
6 R1 0.18 3.1 14.6 0.2 0.2 100

(1773) (8172) (170) (170)
R2 0.17 1.2 13 1.9 1.5 104

(771) (7774) (1171) (972)

aColumn 7 displays the fraction of bacteria detectable with the bacterial probe set which were identified with specific oligonucleotide

probes. Values listed in the table are the average percentage795% confidence interval (values in brackets). NF=normalization factor.
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of the suspended bacteria which were detectable by
FISH could not further be classified with the more
specific probes. Whether these bacteria appeared in the

reactor due to the acetate addition or the elevated
ammonia concentrations could not be clarified.

3.5. Population dynamics during phase I

Biofilm samples were taken before and after the
storage period preceding operation of reactor R0
(samples 1 and 2) and after 112 days of operation
(sample 3), in order to evaluate the effects of the storage
period on the microbial community composition.

The samples were hybridized in situ with probes
Nso1225, NEU and Ntspa662, as well as the EUB338
probe set. After the storage period (sample 2) the
fraction of ammonia-oxidizers was larger than during

normal operation (samples 1 and 3) while the relative
abundance of nitrite-oxidizers decreased (data not
shown), suggesting that the nitrite-oxidizers decayed

faster than the ammonia-oxidizers under the selected
storage conditions. The characterization of the biofilm
from reactor R0 during operation (sample 3) showed

that the ammonia-oxidizing population detected with
probe Nso1225 was able to recover a comparable

relative abundance as before the storage period (sample
1), while the nitrite-oxidizing population decreased
considerably from 38% (sample 1) to 20% (sample 3).

Furthermore, the morphology of the nitrite-oxidizing
clusters changed from big clusters present before the
storage period (sample 1), to small ones mixed with net-

like structures afterwards (sample 3). Despite the
decrease in the relative abundance of nitrite-oxidizers,
no nitrite accumulation was observed during phase I.
This suggests that the nitrite-oxidizers present in net-like

structures in sample 3 are more active (possibly due to a
better accessibility to substrates) than those occurring in
big clusters in sample 1.

3.6. Population dynamics during phase II

In the transition from phases I to II the amount of

biofilm particles from reactor R0 was split up between
reactors R1 and R2, while the NH4

+-N load per reactor
was reduced from 1.24 to 0.48–0.61 kgm�3 d�1. Despite

the lower amount of biofilm particles in R1 and R2 than
in R0, the biomass concentration per reactor volume was
similar in both reactors during phases I and II (Table 2).

This can be explained by a lower biofilm detachment
rate in reactors R1 and R2 caused by a decrease in the

Fig. 6. Population dynamics of ammonia-oxidizers, nitrite-oxidizers and heterotrophs in the biofilm during process operation of

reactors R1 and R2 with pure nitrification [phase I (sampling point 3) and phase II (sampling point 4)] and combined nitrification and

organic carbon removal (phase IIIFsampling points 5 and 6). In addition, the microbial community composition of the suspended

biomass is displayed for both reactors for sampling point 6.
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collision frequency between biofilm particles. Conse-
quently, the NH4

+-N load to biomass ratio was higher in

R0 (0.46 kg kg
�1 d�1) than in R1 (0.25 kg kg

�1 d�1) and
R2 (0.24 kg kg

�1 d�1). As a result the effluent NH4
+-N

concentration of the reactors dropped from 1.8mg l�1

(R0) to 0.6mg l
�1 (R1) and 0.2mg l

�1 (R2), respectively.
The normalized abundance of ammonia-oxidizers in the
biofilm decreased from reactor R0 (sample 3) to reactor
R1 (sample 4) and reactor R2 (sample 4), respectively

(Fig. 6; Table 3). The NH4
+-N concentration in reactors

R1 and R2 was lower than the assumed saturation
constant of 0.7mg l�1 [18], and thus most likely limited

the amount of ammonia-oxidizers in the biofilm. Unlike
the ammonia-oxidizing population the relative abun-
dance of nitrite-oxidizers increased in R2 and remained

approximately constant in R1 during phase II (N
operation). According to Eq. (2), in reactor R2 a
heterotrophic population (8%) detectable with probe

ALF1b developed.

3.7. Population dynamics during phase III

The newly introduced supply of acetate during phase
III induced the growth of heterotrophic microorganisms
both in suspension and in the biofilm in both reactors.

Biofilm samples collected 12 days after acetate addition
(sample 5) showed the presence of a thin layer of
heterotrophic beta-Proteobacteria distributed discon-

tinuously on top of the nitrifying biofilm, accounting
for 7–8% of the bacterial biofilm population in both
reactors. Like during phase II, a heterotrophic popula-

tion detectable with probe ALF1b (7%) was exclusively
present in reactor R2, 12 days after addition of acetate.
During the first 12 days of phase III the abundance of
nitrite-oxidizers decreased in the biofilm of both

reactors, while the ammonia-oxidizers decreased only
in R1. The latter observation corresponds with the
higher loss of ammonium removal observed in reactor

R1, (28% loss) compared to reactor R2 (19% loss).
The ammonium removal in reactor R2 continued to

decrease during the subsequent days of acetate addition

until a complete breakdown of the nitrification process
happened. After 50 days of acetate addition (sample 6),
no ammonia-oxidizing bacteria could be detected in

reactor R2 while the relative in situ abundance of
Nitrospira-like nitrite-oxidizers was similar to the one
during phase II (N operation). At that time reactor R2
biofilm was dominated by heterotrophic beta-Proteo-

bacteria that amounted to 60% of the total biovolume
labeled with the bacterial probe set. In contrast to
reactor R2, the extended addition of acetate did not

cause a complete breakdown of nitrification in reactor
R1. In this reactor, the ammonium removal efficiency
stabilized at 69% and the heterotrophic beta population

in the biofilm amounted to a maximum biovolume
fraction of only 13% (sample 6). As in reactor R2, the

nitrite-oxidizing population in reactor R1 did recover its
initial relative abundance during prolonged acetate

dosage.

4. Discussion

In this study the microbial community composition
and dynamics in two nitrifying biofilm reactors (differing
in hydraulic retention time) was monitored using

molecular tools during a shift in process operation from
pure nitrification to combined nitrification and organic
carbon removal. In general, the dynamics of the

microbial communities correlated well with the perfor-
mance of the respective reactors. In the following
sections several interesting findings are discussed in

more detail.

4.1. Composition and dynamics of bacterial populations
in the reactors

In both reactors at least two populations of beta-
subclass ammonia-oxidizers were present. As demon-
strated by oligonucleotide probing and comparative

AmoA sequence analysis, one of these populations was
closely related to the model organism Nitrosomonas
europaea, while the other population surprisingly

showed no close relationship with recognized ammo-
nia-oxidizers. Nitrite oxidation was catalyzed in both
reactors mainly by Nitrospira-like bacteria confirming

the recently recognized importance of these bacteria for
nitrite oxidation in several environments (e.g.
[13,14,19]). In both reactors Nitrospiras occurred in
previously not observed net-like structures in the

biofilm. In the present work, Nitrobacter could only be
detected in small numbers in the biofilm of reactor R2
during simultaneous addition of acetate and ammonium

(phase III) and a concurrent increase of the NO2
�-N

concentration from 0.02mg l–1 (phase II) to 0.39mg l�1

(phase III). This result is consistent with the recently

published hypothesis that Nitrospiras are k-strategists
(and thus thrive at low nitrite concentrations) while
Nitrobacter as r-strategist can compete successfully only

in environments with relatively high nitrite concentra-
tions [19]. The absence of detectable Nitrobacters in
reactor R1 during phase III might have been caused by
the lower NO2

�-N accumulation (0.22mg l�1) in this

reactor compared to reactor R2. In addition, Nitrobacter
might have benefited in phase III in R2 from its
capability to grow mixotrophically with acetate while

Nitrospiras might not possess this capability [14]. On the
other hand we yet have no explanation for the observed
increase of Nitrospira-like nitrite oxidizers during phase

III in both reactors despite the decreasing or even failing
nitrification during this period.
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Despite the lack of organic carbon dosing during
phase II a presumably heterotrophic population af-

filiated with the alpha-subclass Proteobacteria was
present in the biofilm of reactor R2 (5.0 h retention
time), but disappeared during reactor operation with

acetate (end of phase III). Most likely this population
was growing on soluble microbial products (SMP)
formed by active nitrifiers in the biofilm [20] since
SMP concentration should be higher in reactor R2 than

in reactor R1 due to the difference in retention time. In
phase III the supply of acetate provoked the breakdown
of the nitrification process in reactor R2, consequently

SMP were no longer produced and the alpha-proteo-
bacterial population disappeared from the biofilm.
During combined nitrification and organic carbon

removal in phase III a higher group-level diversity of
heterotrophic microorganisms was found in suspension
than in the biofilm. This result might be explained by the

fact that the heterotrophic biofilm community is exposed
to a higher shear stress compared to the suspended
consortia. Thus, only fast growing heterotrophs can
maintain themselves in the outer layer of the biofilm, a

selection pressure which might reduce diversity.

4.2. Population dynamics versus reactor performance

During phase II (pure nitrification) the biofilm was, as
expected, dominated by ammonia- and nitrite-oxidizing

bacteria in both reactors. After acetate addition (phase
III), the formation of a thicker layer of heterotrophic
bacteria in reactor R2 (with long retention time) on the

surface of the nitrifying biofilm led to increased oxygen
mass transfer resistance from bulk liquid to the nitrifiers.
This coincided with a drastic reduction in the ammonia-
oxidizing population and a subsequent breakdown of

the nitrification process. In contrast, reactor R1 operated
with short retention time displayed a smaller increase of
heterotrophic biofilm bacteria on the surface which

corresponded to the less pronounced reduction in
nitrification performance. An alternative hypotheses
for the breakdown of the nitrification in reactor R2
during phase III would be that nitrifiers but not the
heterotrophs were lost from the biofilm due to detach-
ment and finally washed out of the reactor. This would

be consistent with the absence of in situ detectable
ammonia-oxidizers in sample 6 of reactor R2. However,
there are two lines of evidence that oxygen limitation
and not selective washout caused the nitrification

breakdown. Firstly, the even slower growing nitrite-
oxidizers still were detected in significant amounts (31%)
within the biofilm of reactor R2 at the end of phase III.

Secondly, the re-establishment of 90% of the nitrifica-
tion capacity within 14 days after stop of acetate
addition (Fig. 4; phase IV) in reactor R2 contradicts

the possibility of a previous complete depletion of
ammonia-oxidizers. The mass accumulation rate for

nitrifying biofilm of 0.03 kgm�3 d�1, [21] excludes the
chance of such a fast recovery by re-growth. Keeping in

mind previously published data [2] our findings were
unexpected since we assumed that reactor R2 will, due to
its longer retention time, favor suspended growth of the

fast reproducing heterotrophs and thus allow for a
higher biofilm-mediated nitrification during the presence
of acetate.
What remains to be discussed is (i) why a thicker

heterotrophic biofilm is formed on top of the nitrifying
biofilm in reactor R2 compared to reactor R1 and (ii)
why heterotrophic biofilm formation and subsequent

loss of nitrifying capacity was not observed in the airlift
reactor of [2] after addition of organic carbon. Hetero-
trophic biofilm formation in reactor R2 could be

explained by increased liquid phase viscosity in this
reactor due to the presence of extracellular biopolymers
which accumulated compared to reactor R1 due to the

increased liquid retention time in reactor R2. Increased
liquid viscosity will lead to a stronger air bubble
coalescence, thus decreasing the volume occupied by
the gas phase, reducing the driving force for the

circulation and ultimately the shear stress for the biofilm
([22,23]). Consistent with this argumentation, surface
protuberances were observed by us microscopically in

the biofilm of R2 (reflecting the lower shear stress) while
the biofilm of reactor R1 was characterized by a much
smoother biofilm surface (indicative for a higher shear

stress [23]). Differences in liquid phase viscosity or other
factors influencing turbulence and thus shear stress and
substrate availability (e.g. reactor geometry, friction,
structure of the biofilm support particles etc.) could also

be responsible for the inconsistent results between this
study and the work of van Benthum and co-workers.
Independent from the actual reason(s) causing these

inconsistent results of both studies, it is important to
note that extension of hydraulic retention time caused
dramatically different effects in similar biofilm reactors.

5. Conclusions

The following main conclusions can be drawn from
the present study:

1. No major effect of the hydraulic retention time on the
diversity of nitrifying bacteria in the biofilm was
observed. A group of ammonia-oxidizers not closely

related to any described reference strain was identi-
fied in the biofilm from both reactors showing that
even in systems working with defined conditions, the

bacterial diversity is not completely described.
2. Combined nitrification and carbon removal under
oxygen limiting conditions could be accomplished in

the biofilm reactor with low hydraulic retention time
but failed in the reactor with high hydraulic retention
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time. This unexpected finding was caused by the
formation of a thick heterotrophic layer on top of the

nitrifying biofilm in the latter reactor that limited the
nitrifiers’ oxygen supply. Thus, extension of the
hydraulic retention time is not always sufficient to

improve combined nitrification and organic carbon
removal in biofilm reactors.

3. Today, the battery of molecular tools allows to
precisely determine ecological key parameters of

complex microbial communities present in engi-
neered systems. In addition to species richness and
evenness also the in situ activity of probe identified

bacteria can be analyzed [24]. Future interdisciplin-
ary research at the interface between molecular
microbial ecology and civil engineering will almost

certainly allow for a detailed understanding of the
links between microbial diversity, process efficiency
and process stability. For example, it should be

possible by the use of molecular methods to define
operational parameters which selectively increase the
diversity within important functional groups of
bacteria (e.g. nitrifiers) and thus render the microbial

community more resistant against perturbations.
Armed with such knowledge innovative strategies
for process control and design as well as for

bioaugmentation can be developed.
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