90 research outputs found

    If You Don't Look, You Won't See: Intravital Multiphoton Imaging of Primary and Metastatic Breast Cancer

    Get PDF
    A fundamental hallmark of cancer is progression to metastasis and the growth of breast cancer metastases in lung, bone, liver and/or brain causes fatal complications. Unfortunately, the cellular and biochemical mechanisms of the metastatic process remain ill-defined. Recent application of intravital multiphoton microscopy (MP-IVM) to image fluorescently labeled cells in mouse models of cancer has allowed dynamic observation of this multi-step process at the cellular and subcellular levels. In this article, we discuss the use of MP-IVM in studies of breast cancer metastasis, as well as surgical techniques for exposing tumors prior to imaging. We also describe a versatile multiphoton microscope for imaging tumor-stroma interaction

    CC Chemokine Receptor 7–dependent and –independent Pathways for Lymphocyte Homing: Modulation by FTY720

    Get PDF
    Cognate interaction of chemokine receptor CCR7 on lymphocytes with its ligands CCL19 and CCL21 expressed on high endothelial venules (HEVs) is essential for effective migration of T and B cells across HEVs into secondary lymphoid organs. Plt mice, which lack expression of CCL19 and CCL21-ser, both ligands for CCR7 on HEVs, as well as CCR7-deficient mice, have a defective cell migration and reduced homing of lymphocytes. FTY720, a novel immunosuppressant, causes a reduction of lymphocytes in peripheral blood and tissues and their sequestration into lymphoid tissues. In this study we demonstrate that FTY720 rescues the homing defect in both CCR7−/− mice and plt mice. After FTY720 treatment, the number of CD4+ and CD8+ T cells as well as B cells in peripheral blood is reduced while pertussis toxin–sensitive homing into peripheral lymph nodes, mesenteric lymph node, and Peyer's patches is increased. Immunohistology demonstrates that FTY720 enables these cells to enter lymphoid tissue through HEVs. Thus, our data suggest an alternative G-αi-dependent, CCR7-CCL19/CCL21-independent mechanism for lymphocyte homing through HEVs which is strongly augmented in the presence of FTY720

    The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation

    Get PDF
    We thank Manuel Kulagin for technical help, Pierre Bonnaventure for portal vein blood sampling, Francisco Sepulveda for technical assistance in GS-MS acquisition, and Dorothee Hahne (Metabolomics Australia, University of Western Australia) for human samples SCFA isolation, acquisition, and analysis. We also thank Cristina Cartoni (Phenotyping Unit, EPFL) for Milliplex analysis, Jessica Dessimoz and her team from the Histology Core Facility (EPFL), Miguel Garcia and his team from the Flow Cytometry Core Facility (EPFL), and staff from the EPFL CPG animal house for excellent animal care. The computations were partially performed at the Vital-IT Center for high-performance computing of the SIB Swiss Institute of Bioinformatics (http://www.vital-it.ch). The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 310948. Funding for A.W.W. and a subset of the 16S rRNA gene sequencing was provided by the Wellcome Trust (grant number WT 098051). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling

    Get PDF
    Background: Short-chain fatty acids (SCFAs) are fermented dietary components that regulate immune responses, promote colonic health, and suppress mast cell–mediated diseases. However, the effects of SCFAs on human mast cell function, including the underlying mechanisms, remain unclear. Here, we investigated the effects of the SCFAs (acetate, propionate, and butyrate) on mast cell–mediated pathology and human mast cell activation, including the molecular mechanisms involved. Method: Precision-cut lung slices (PCLS) of allergen-exposed guinea pigs were used to assess the effects of butyrate on allergic airway contraction. Human and mouse mast cells were co-cultured with SCFAs and assessed for degranulation after IgE- or non–IgE-mediated stimulation. The underlying mechanisms involved were investigated using knockout mice, small molecule inhibitors/agonists, and genomics assays. Results: Butyrate treatment inhibited allergen-induced histamine release and airway contraction in guinea pig PCLS. Propionate and butyrate, but not acetate, inhibited IgE- and non–IgE-mediated human or mouse mast cell degranulation in a concentration-dependent manner. Notably, these effects were independent of the stimulation of SCFA receptors GPR41, GPR43, or PPAR, but instead were associated with inhibition of histone deacetylases. Transcriptome analyses revealed butyrate-induced downregulation of the tyrosine kinases BTK, SYK, and LAT, critical transducers of FcεRI-mediated signals that are essential for mast cell activation. Epigenome analyses indicated that butyrate redistributed global histone acetylation in human mast cells, including significantly decreased acetylation at the BTK, SYK, and LAT promoter regions. Conclusion: Known health benefits of SCFAs in allergic disease can, at least in part, be explained by epigenetic suppression of human mast cell activation

    A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis

    Get PDF
    Millions of platelets are produced each hour by bone marrow (BM) megakaryocytes (MKs). MKs extend transendothelial proplatelet (PP) extensions into BM sinusoids and shed new platelets into the blood. The mechanisms that control platelet generation remain incompletely understood. Using conditional mutants and intravital multiphoton microscopy, we show here that the lipid mediator sphingosine 1-phosphate (S1P) serves as a critical directional cue guiding the elongation of megakaryocytic PP extensions from the interstitium into BM sinusoids and triggering the subsequent shedding of PPs into the blood. Correspondingly, mice lacking the S1P receptor S1pr1 develop severe thrombocytopenia caused by both formation of aberrant extravascular PPs and defective intravascular PP shedding. In contrast, activation of S1pr1 signaling leads to the prompt release of new platelets into the circulating blood. Collectively, our findings uncover a novel function of the S1P-S1pr1 axis as master regulator of efficient thrombopoiesis and might raise new therapeutic options for patients with thrombocytopenia

    Antigen affinity discrimination is an intrinsic function of the B cell receptor

    Get PDF
    Antibody affinity maturation, a hallmark of adaptive immune responses, results from the selection of B cells expressing somatically hypermutated B cell receptors (BCRs) with increased affinity for antigens. Despite the central role of affinity maturation in antibody responses, the molecular mechanisms by which the increased affinity of a B cell for antigen is translated into a selective advantage for that B cell in immune responses is incompletely understood. We use high resolution live-cell imaging to provide evidence that the earliest BCR-intrinsic events that follow within seconds of BCR–antigen binding are highly sensitive to the affinity of the BCR for antigen. High affinity BCRs readily form oligomers and the resulting microclusters grow rapidly, resulting in enhanced recruitment of Syk kinase and calcium fluxes. Thus, B cells are able to read the affinity of antigen by BCR-intrinsic mechanisms during the earliest phases of BCR clustering, leading to the initiation of B cell responses

    The IL-33/ST2 pathway contributes to intestinal tumorigenesis in humans and mice.

    Get PDF
    Colorectal cancer (CRC) develops through a multistep process and is modulated by inflammation. However, the inflammatory pathways that support intestinal tumors at different stages remain incompletely understood. Interleukin (IL)-33 signaling plays a role in intestinal inflammation, yet its contribution to the pathogenesis of CRC is unknown. Using immunohistochemistry on 713 resected human CRC specimens, we show here that IL-33 and its receptor ST2 are expressed in low-grade and early-stage human CRCs, and to a lesser extent in higher-grade and more advanced-stage tumors. In a mouse model of CRC, ST2-deficiency protects from tumor development. Moreover, bone marrow (BM) chimera studies indicate that engagement of the IL-33/ST2 pathway on both the radio-resistant and radio-sensitive compartment is essential for CRC development. Mechanistically, activation of IL-33/ST2 signaling compromises the integrity of the intestinal barrier and triggers the production of pro-tumorigenic IL-6 by immune cells. Together, this data reveals a tumor-promoting role of IL-33/ST2 signaling in CRC

    Cd4+ T Cell Subsets during Virus Infection: Protective Capacity Depends on Effector Cytokine Secretion and on Migratory Capability

    Get PDF
    To analyze the antiviral protective capacities of CD4+ T helper (Th) cell subsets, we used transgenic T cells expressing an I-Ab–restricted T cell receptor specific for an epitope of vesicular stomatitis virus glycoprotein (VSV-G). After polarization into Th1 or Th2 effectors and adoptive transfer into T cell–deficient recipients, protective capacities were assessed after infection with different types of viruses expressing the VSV-G. Both Th1 and Th2 CD4+ T cells could transfer protection against systemic VSV infection, by stimulating the production of neutralizing immunoglobulin G antibodies. However, only Th1 CD4+ T cells were able to mediate protection against infection with recombinant vaccinia virus expressing the VSV-G (Vacc-IND-G). Similarly, only Th1 CD4+ T cells were able to rapidly eradicate Vacc-IND-G from peripheral organs, to mediate delayed-type hypersensitivity responses against VSV-G and to protect against lethal intranasal infection with VSV. Protective capacity correlated with the ability of Th1 CD4+ T cells to rapidly migrate to peripheral inflammatory sites in vivo and to respond to inflammatory chemokines that were induced after virus infection of peripheral tissues. Therefore, the antiviral protective capacity of a given CD4+ T cell is governed by the effector cytokines it produces and by its migratory capability
    corecore