77 research outputs found

    Submeter-level Land Cover Mapping of Japan

    Full text link
    Deep learning has shown promising performance in submeter-level mapping tasks; however, the annotation cost of submeter-level imagery remains a challenge, especially when applied on a large scale. In this paper, we present the first submeter-level land cover mapping of Japan with eight classes, at a relatively low annotation cost. We introduce a human-in-the-loop deep learning framework leveraging OpenEarthMap, a recently introduced benchmark dataset for global submeter-level land cover mapping, with a U-Net model that achieves national-scale mapping with a small amount of additional labeled data. By adding a small amount of labeled data of areas or regions where a U-Net model trained on OpenEarthMap clearly failed and retraining the model, an overall accuracy of 80\% was achieved, which is a nearly 16 percentage point improvement after retraining. Using aerial imagery provided by the Geospatial Information Authority of Japan, we create land cover classification maps of eight classes for the entire country of Japan. Our framework, with its low annotation cost and high-accuracy mapping results, demonstrates the potential to contribute to the automatic updating of national-scale land cover mapping using submeter-level optical remote sensing data. The mapping results will be made publicly available.Comment: 16 pages, 10 figure

    Land-cover change detection using paired OpenStreetMap data and optical high-resolution imagery via object-guided Transformer

    Full text link
    Optical high-resolution imagery and OpenStreetMap (OSM) data are two important data sources for land-cover change detection. Previous studies in these two data sources focus on utilizing the information in OSM data to aid the change detection on multi-temporal optical high-resolution images. This paper pioneers the direct detection of land-cover changes utilizing paired OSM data and optical imagery, thereby broadening the horizons of change detection tasks to encompass more dynamic earth observations. To this end, we propose an object-guided Transformer (ObjFormer) architecture by naturally combining the prevalent object-based image analysis (OBIA) technique with the advanced vision Transformer architecture. The introduction of OBIA can significantly reduce the computational overhead and memory burden in the self-attention module. Specifically, the proposed ObjFormer has a hierarchical pseudo-siamese encoder consisting of object-guided self-attention modules that extract representative features of different levels from OSM data and optical images; a decoder consisting of object-guided cross-attention modules can progressively recover the land-cover changes from the extracted heterogeneous features. In addition to the basic supervised binary change detection task, this paper raises a new semi-supervised semantic change detection task that does not require any manually annotated land-cover labels of optical images to train semantic change detectors. Two lightweight semantic decoders are added to ObjFormer to accomplish this task efficiently. A converse cross-entropy loss is designed to fully utilize the negative samples, thereby contributing to the great performance improvement in this task. The first large-scale benchmark dataset containing 1,287 map-image pairs (1024×\times 1024 pixels for each sample) covering 40 regions on six continents ...(see the manuscript for the full abstract

    Estimation of All-Weather 1 km MODIS Land Surface Temperature for Humid Summer Days

    Get PDF
    Land surface temperature (LST) is used as a critical indicator for various environmental issues because it links land surface fluxes with the surface atmosphere. Moderate-resolution imaging spectroradiometers (MODIS) 1 km LSTs have been widely utilized but have the serious limitation of not being provided under cloudy weather conditions. In this study, we propose two schemes to estimate all-weather 1 km Aqua MODIS daytime (1:30 p.m.) and nighttime (1:30 a.m.) LSTs in South Korea for humid summer days. Scheme 1 (S1) is a two-step approach that first estimates 10 km LSTs and then conducts the spatial downscaling of LSTs from 10 km to 1 km. Scheme 2 (S2), a one-step algorithm, directly estimates the 1 km all-weather LSTs. Eight advanced microwave scanning radiometer 2 (AMSR2) brightness temperatures, three MODIS-based annual cycle parameters, and six auxiliary variables were used for the LST estimation based on random forest machine learning. To confirm the effectiveness of each scheme, we have performed different validation experiments using clear-sky MODIS LSTs. Moreover, we have validated all-weather LSTs using bias-corrected LSTs from 10 in situ stations. In clear-sky daytime, the performance of S2 was better than S1. However, in cloudy sky daytime, S1 simulated low LSTs better than S2, with an average root mean squared error (RMSE) of 2.6 degrees C compared to an average RMSE of 3.8 degrees C over 10 stations. At nighttime, S1 and S2 demonstrated no significant difference in performance both under clear and cloudy sky conditions. When the two schemes were combined, the proposed all-weather LSTs resulted in an average R-2 of 0.82 and 0.74 and with RMSE of 2.5 degrees C and 1.4 degrees C for daytime and nighttime, respectively, compared to the in situ data. This paper demonstrates the ability of the two different schemes to produce all-weather dynamic LSTs. The strategy proposed in this study can improve the applicability of LSTs in a variety of research and practical fields, particularly for areas that are very frequently covered with clouds

    Multiple Classifier System for Remote Sensing Image Classification: A Review

    Get PDF
    Over the last two decades, multiple classifier system (MCS) or classifier ensemble has shown great potential to improve the accuracy and reliability of remote sensing image classification. Although there are lots of literatures covering the MCS approaches, there is a lack of a comprehensive literature review which presents an overall architecture of the basic principles and trends behind the design of remote sensing classifier ensemble. Therefore, in order to give a reference point for MCS approaches, this paper attempts to explicitly review the remote sensing implementations of MCS and proposes some modified approaches. The effectiveness of existing and improved algorithms are analyzed and evaluated by multi-source remotely sensed images, including high spatial resolution image (QuickBird), hyperspectral image (OMISII) and multi-spectral image (Landsat ETM+). Experimental results demonstrate that MCS can effectively improve the accuracy and stability of remote sensing image classification, and diversity measures play an active role for the combination of multiple classifiers. Furthermore, this survey provides a roadmap to guide future research, algorithm enhancement and facilitate knowledge accumulation of MCS in remote sensing community

    ystème de classifieurs multiple pour la classification de données hyperspectrales

    No full text
    In this thesis, we propose several new techniques for the classification of hyperspectral remote sensing images based on multiple classifier system (MCS). Our proposed framework introduces significant innovations with regards to previous approaches in the same field, many of which are mainly based on an individual algorithm. First, we propose to use Rotation Forests with several linear feature extraction and compared them with the traditional ensemble approaches, such as Bagging, Boosting, Random subspace and Random Forest. Second, the integration of the support vector machines (SVM) with Rotation subspace framework for context classification is investigated. SVM and Rotation subspace are two powerful tools for high-dimensional data classification. Therefore, combining them can further improve the classification performance. Third, we extend the work of Rotation Forests by incorporating local feature extraction technique and spatial contextual information with Markov random Field (MRF) to design robust spatial-spectral methods. Finally, we presented a new general framework, Random subspace ensemble, to train series of effective classifiers, including decision trees and extreme learning machine (ELM), with extended multi-attribute profiles (EMAPs) for classifying hyperspectral data. Six RS ensemble methods, including Random subspace with DT (RSDT), Random Forest (RF), Rotation Forest (RoF), Rotation Random Forest (RoRF), RS with ELM (RSELM) and Rotation subspace with ELM (RoELM), are constructed by the multiple base learners. The effectiveness of the proposed techniques is illustrated by comparing with state-of-the-art methods by using real hyperspectral data sets with different contexts.Dans cette thèse, nous proposons plusieurs nouvelles techniques pour la classification d'images hyperspectrales basées sur l'apprentissage d'ensemble. Le cadre proposé introduit des innovations importantes par rapport aux approches précédentes dans le même domaine, dont beaucoup sont basées principalement sur un algorithme individuel. Tout d'abord, nous proposons d'utiliser la Forêt de Rotation (Rotation Forest) avec différentes techiniques d'extraction de caractéristiques linéaire et nous comparons nos méthodes avec les approches d'ensemble traditionnelles, tels que Bagging, Boosting, Sous-espace Aléatoire et Forêts Aléatoires. Ensuite, l'intégration des machines à vecteurs de support (SVM) avec le cadre de sous-espace de rotation pour la classification de contexte est étudiée. SVM et sous-espace de rotation sont deux outils puissants pour la classification des données de grande dimension. C'est pourquoi, la combinaison de ces deux méthodes peut améliorer les performances de classification. Puis, nous étendons le travail de la Forêt de Rotation en intégrant la technique d'extraction de caractéristiques locales et l'information contextuelle spatiale avec un champ de Markov aléatoire (MRF) pour concevoir des méthodes spatio-spectrale robustes. Enfin, nous présentons un nouveau cadre général, ensemble de sous-espace aléatoire, pour former une série de classifieurs efficaces, y compris les arbres de décision et la machine d'apprentissage extrême (ELM), avec des profils multi-attributs étendus (EMaPS) pour la classification des données hyperspectrales. Six méthodes d'ensemble de sous-espace aléatoire, y compris les sous-espaces aléatoires avec les arbres de décision, Forêts Aléatoires (RF), la Forêt de Rotation (RoF), la Forêt de Rotation Aléatoires (Rorf), RS avec ELM (RSELM) et sous-espace de rotation avec ELM (RoELM), sont construits par multiples apprenants de base. L'efficacité des techniques proposées est illustrée par la comparaison avec des méthodes de l'état de l'art en utilisant des données hyperspectrales réelles dans de contextes différents

    Multimodal, multitemporal, and multisource global data fusion for local climate zones classification based on ensemble learning

    Get PDF
    This paper presents a new methodology for classification of local climate zones based on ensemble learning techniques. Landsat-8 data and open street map data are used to extract spectral-spatial features, including spectral reflectance, spectral indexes, and morphological profiles fed to subsequent classification methods as inputs. Canonical correlation forests and rotation forests are used for the classification step. The final classification map is generated by majority voting on different classification maps obtained by the two classifiers using multiple training subsets. The proposed method achieved an overall accuracy of 74.94% and a kappa coefficient of 0.71 in the 2017 IEEE GRSS Data Fusion Contest

    Random Forest Ensembles and Extended Multi-Extinction Profiles for Hyperspectral Image Classification

    Get PDF
    Classification techniques for hyperspectral images based on random forest (RF) ensembles and extended multiextinction profiles (EMEPs) are proposed as a means of improving performance. To this end, five strategies--bagging, boosting, random subspace, rotation-based, and boosted rotation-based--are used to construct the RF ensembles. EPs, which are based on an extrema-oriented connected filtering technique, are applied to the images associated with the first informative components extracted by independent component analysis, leading to a set of EMEPs. The effectiveness of the proposed method is investigated on two benchmark hyperspectral images: the University of Pavia and Indian Pines. Comparative experimental evaluations reveal the superior performance of the proposed methods, especially those employing rotation-based and boosted rotation-based approaches. An additional advantage is that the CPU processing time is acceptable
    corecore