9 research outputs found

    Modulation of miRISC-mediated gene silencing in eukaryotes

    Get PDF
    Gene expression is regulated at multiple levels in eukaryotic cells. Regulation at the post-transcriptional level is modulated by variou

    N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products

    Get PDF
    Synthetic mRNA technology is a promising avenue for treating and preventing disease. Key to the technology is the incorporation of modified nucleotides such as N1-methylpseudouridine (m1Ψ) to decrease immunogenicity of the RNA. However, relatively few studies have addressed the effects of modified nucleotides on the decoding process. Here, we investigate the effect of m1Ψ and the related modification pseudouridine (Ψ) on translation. In a reconstituted system, we find that m1Ψ does not significantly alter decoding accuracy. More importantly, we do not detect an increase in miscoded peptides when mRNA containing m1Ψ is translated in cell culture, compared with unmodified mRNA. We also find that m1Ψ does not stabilize mismatched RNA-duplex formation and only marginally promotes errors during reverse transcription. Overall, our results suggest that m1Ψ does not significantly impact translational fidelity, a welcome sign for future RNA therapeutics

    ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression

    Get PDF
    SummaryWe show that combinatorial mouse alleles for the secreted metalloproteases Adamts5, Adamts20 (bt), and Adamts9 result in fully penetrant soft-tissue syndactyly. Interdigital webs in Adamts5−/−;bt/bt mice had reduced apoptosis and decreased cleavage of the proteoglycan versican; however, the BMP-FGF axis, which regulates interdigital apoptosis was unaffected. BMP4 induced apoptosis, but without concomitant versican proteolysis. Haploinsufficiency of either Vcan or Fbln1, a cofactor for versican processing by ADAMTS5, led to highly penetrant syndactyly in bt mice, suggesting that cleaved versican was essential for web regression. The local application of an aminoterminal versican fragment corresponding to ADAMTS-processed versican, induced cell death in Adamts5−/−;bt/bt webs. Thus, ADAMTS proteases cooperatively maintain versican proteolysis above a required threshold to create a permissive environment for apoptosis. The data highlight the developmental significance of proteolytic action on the ECM, not only as a clearance mechanism, but also as a means to generate bioactive versican fragments

    Altered versican cleavage in ADAMTS5 deficient mice : a novel etiology of myxomatous valve disease

    Get PDF
    AbstractIn fetal valve maturation the mechanisms by which the relatively homogeneous proteoglycan-rich extracellular matrix (ECM) of endocardial cushions is replaced by a specialized and stratified ECM found in mature valves are not understood. Therefore, we reasoned that uncovering proteases critical for ‘remodeling’ the proteoglycan rich (extracellular matrix) ECM may elucidate novel mechanisms of valve development. We have determined that mice deficient in ADAMTS5, (A Disintegrin-like And Metalloprotease domain with ThromboSpondin-type 1 motifs) which we demonstrated is expressed predominantly by valvular endocardium during cardiac valve maturation, exhibited enlarged valves. ADAMTS5 deficient valves displayed a reduction in cleavage of its substrate versican, a critical cardiac proteoglycan. In vivo reduction of versican, in Adamts5−/− mice, achieved through Vcan heterozygosity, substantially rescued the valve anomalies. An increase in BMP2 immunolocalization, Sox9 expression and mesenchymal cell proliferation were observed in Adamts5−/− valve mesenchyme and correlated with expansion of the spongiosa (proteoglycan-rich) region in Adamts5−/− valve cusps. Furthermore, these data suggest that ECM remodeling via ADAMTS5 is required for endocardial to mesenchymal signaling in late fetal valve development. Although adult Adamts5−/− mice are viable they do not recover from developmental valve anomalies and have myxomatous cardiac valves with 100% penetrance. Since the accumulation of proteoglycans is a hallmark of myxomatous valve disease, based on these data we hypothesize that a lack of versican cleavage during fetal valve development may be a potential etiology of adult myxomatous valve disease

    Impaired T cell proliferation, increased soluble death-inducing receptors and activation-induced T cell death in patients undergoing haemodialysis

    No full text
    Haemodialysis is a widespread option for end-stage renal disease (ESRD). Long-term success of dialysis is, however, limited by a high rate of serious bacterial and viral infections. We compared T cell functions in ESRD patients undergoing haemodialysis (n = 20), or were not dialysed and received conventional medical treatment (n = 20). Healthy volunteers (n = 15) served as controls. The T cell phenotype was examined by immunofluorescence using fluorochrome-labelled monoclonal antibodies and FACS analysis. The concentration of soluble CD95/Fas and of tumour necrosis factor-α receptor type 1 (sTNFR1) in the sera was quantified by ELISA. Activation-induced programmed T cell death was triggered by anti-CD3/CD28 antibodies and measured by 7-AAD staining. All immunological tests were performed at least 1 month after dialysis initiation. T cell proliferation in response to phytohaemagglutinin or anti-CD3 monoclonal antibodies was moderately diminished in non-dialysed patients and markedly reduced in haemodialysis patients compared to healthy controls (P < 0·01 and P < 0·001, respectively). In a mixed lymphocyte culture the proliferative response of T cells from dialysed patients was significantly diminished (P < 0·001). T cells of both non-dialysed and dialysed patients have augmented CD95/Fas and CD45RO expression, increased sCD95/Fas and sTNFR1 release and spontaneously undergo apoptosis. Culture of T cells from haemodialysis patients with anti-CD3/CD28 antibodies increased the proportion of CD4+ T cells committing activation-induced cell death by a mean 7·5-fold compared to T-helper cells from non-dialysed patients (P < 0·001). Renal failure and initiation of haemodialysis results in a reduced proliferative T cell response, an aberrant state of T cell activation and heightened susceptibility of CD4+ T cells to activation-induced cell death

    ADAMTS9 Is a Cell-Autonomously Acting, Anti-Angiogenic Metalloprotease Expressed by Microvascular Endothelial Cells

    No full text
    The metalloprotease ADAMTS9 participates in melanoblast development and is a tumor suppressor in esophageal and nasopharyngeal cancer. ADAMTS9 null mice die before gastrulation, but, ADAMTS9+/− mice were initially thought to be normal. However, when congenic with the C57Bl/6 strain, 80% of ADAMTS9+/− mice developed spontaneous corneal neovascularization. β-Galactosidase staining enabled by a lacZ cassette targeted to the ADAMTS9 locus showed that capillary endothelial cells (ECs) in embryonic and adult tissues and in capillaries growing into heterotopic tumors expressed ADAMTS9. Heterotopic B.16-F10 melanomas elicited greater vascular induction in ADAMTS9+/− mice than in wild-type littermates, suggesting a potential inhibitory role in tumor angiogenesis. Treatment of cultured human microvascular ECs with ADAMTS9 small-interfering RNA resulted in enhanced filopodial extension, decreased cell adhesion, increased cell migration, and enhanced formation of tube-like structures on Matrigel. Conversely, overexpression of catalytically active, but not inactive, ADAMTS9 in ECs led to fewer tube-like structures, demonstrating that the proteolytic activity of ADAMTS9 was essential. However, unlike the related metalloprotease ADAMTS1, which exerts anti-angiogenic effects by cleavage of thrombospondins and sequestration of vascular endothelial growth factor165, ADAMTS9 neither cleaved thrombospondins 1 and 2, nor bound vascular endothelial growth factor165. Taken together, these data identify ADAMTS9 as a novel, constitutive, endogenous angiogenesis inhibitor that operates cell-autonomously in ECs via molecular mechanisms that are distinct from those used by ADAMTS1
    corecore