771 research outputs found
Ferromagnetic domain structure of La0.78Ca0.22MnO3 single crystals
The magneto-optical technique has been employed to observe spontaneous ferromagnetic domain structures in La0.78Ca0.22MnO3 single crystals. The magnetic domain topology was found to be correlated with the intrinsic twin structure of the investigated crystals. With decreasing temperature the regular network of ferromagnetic domains undergoes significant changes resulting in apparent rotation of the domain walls in the temperature range of 70–150 K. The apparent rotation of the domain walls can be understood in terms of the Jahn-Teller deformation of the orthorhombic unit cell, accompanied by additional twinning
On the Influence of Noise on the Critical and Oscillatory Behavior of a Predator-Prey Model: Coherent Stochastic Resonance at the Proper Frequency
Noise induced changes in the critical and oscillatory behavior of a
Prey-Predator system are studied using power spectrum density and Spectral
Amplification Factor (SAF) analysis. In the absence of external noise, the
population densities exhibit three kinds of asymptotic behavior, namely:
Absorbing State, Fixed Point (FP) and an Oscillatory Regime (OR) with a well
defined proper (natural) frequency. The addition of noise destabilizes the FP
phase inducing a transition to a new OR. Surprisingly, it is found that when a
periodic signal is added to the control parameter, the system responds
robustly, without relevant changes in its behavior. Nevertheless, the "Coherent
Stochastic Resonance" phenomenon is found only at the proper frequency. Also, a
method based on SAF allows us to locate very accurately the transition points
between the different regimes.Comment: RevTex, 18 pgs, 6 figures. Submitted to Physics Letters A (2000
V-I characteristics in the vicinity of order-disorder transition in vortex matter
The shape of the V-I characteristics leading to a peak in the differential
resistance r_d=dV/dI in the vicinity of the order-disorder transition in NbSe2
is investigated. r_d is large when measured by dc current. However, for a small
Iac on a dc bias r_d decreases rapidly with frequency, even at a few Hz, and
displays a large out-of-phase signal. In contrast, the ac response increases
with frequency in the absence of dc bias. These surprisingly opposite phenomena
and the peak in r_d are shown to result from a dynamic coexistence of two
vortex matter phases rather than from the commonly assumed plastic depinning.Comment: 12 pages 4 figures. Accepted for publication in PRB rapi
Reversible magnetization of MgB2 single crystals with a two-gap nature
We present reversible magnetization measurements on MgB2 single crystals in
magnetic fields up to 2.5 T applied parallel to the crystal's c-axis. This
magnetization is analyzed in terms of the Hao-Clem model, and various
superconducting parameters, such as the critical fields [Hc(0) and Hc2(0)], the
characteristic lengths [xi(0) and lambda(0)], and the Ginzburg-Landau
parameter, kappa, are derived. The temperature dependence of the magnetic
penetration depth, lambda(T), obtained from the Hao-Clem analysis could not be
explained by theories assuming a single gap. Our data are well described by
using a two-gap model.Comment: 20 pages, 1 table, 4 figures, will be published in Phys. Rev.
Ultrafast photoinduced reflectivity transients in
The temperature dependence of ultrafast photoinduced reflectivity transients
is reported in NdSrMnO thin film. The photoinduced
reflectivity shows a complex response with very different temperature
dependences on different timescales. The response on the sub-ps timescale
appears to be only weakly sensitive to the 270K-metal-insulator phase
transition. Below K the sub-ps response displays a two component
behavior indicating inhomogeneity of the film resulting from the substrate
induced strain. On the other hand, the slower response on the 10-100 ps
timescale is sensitive only to the metal-insulator phase transition and is in
agreement with some previously published results. The difference in the
temperature dependences of the responses on nanosecond and s timescales
indicates that thermal equilibrium between the different degrees of fredom is
established relatively slowly - on a nanosecond timescale
Current reversal with type-I intermittency in deterministic inertia ratchets
The intermittency is investigated when the current reversal occurs in a
deterministic inertia ratchet system. To determine which type the intermittency
belongs to, we obtain the return map of velocities of particle using
stroboscopic recording, and numerically calculate the distribution of average
laminar length . The distribution follows the scaling law of , the characteristic relation of type-I
intermittency.Comment: 4 pages, 7 figure
Effective Hamiltonian and unitarity of the S matrix
The properties of open quantum systems are described well by an effective
Hamiltonian that consists of two parts: the Hamiltonian of the
closed system with discrete eigenstates and the coupling matrix between
discrete states and continuum. The eigenvalues of determine the
poles of the matrix. The coupling matrix elements
between the eigenstates of and the continuum may be very
different from the coupling matrix elements between the eigenstates
of and the continuum. Due to the unitarity of the matrix, the
\TW_k^{cc'} depend on energy in a non-trivial manner, that conflicts with the
assumptions of some approaches to reactions in the overlapping regime. Explicit
expressions for the wave functions of the resonance states and for their phases
in the neighbourhood of, respectively, avoided level crossings in the complex
plane and double poles of the matrix are given.Comment: 17 pages, 7 figure
The T2K ND280 Off-Axis Pi-Zero Detector
The Pi-Zero detector (P{\O}D) is one of the subdetectors that makes up the
off-axis near detector for the Tokai-to-Kamioka (T2K) long baseline neutrino
experiment. The primary goal for the P{\O}D is to measure the relevant cross
sections for neutrino interactions that generate pi-zero's, especially the
cross section for neutral current pi-zero interactions, which are one of the
dominant sources of background to the electron neutrino appearance signal in
T2K. The P{\O}D is composed of layers of plastic scintillator alternating with
water bags and brass sheets or lead sheets and is one of the first detectors to
use Multi-Pixel Photon Counters (MPPCs) on a large scale.Comment: 17 pages, submitted to NIM
Geometric Entanglement of Symmetric States and the Majorana Representation
Permutation-symmetric quantum states appear in a variety of physical
situations, and they have been proposed for quantum information tasks. This
article builds upon the results of [New J. Phys. 12, 073025 (2010)], where the
maximally entangled symmetric states of up to twelve qubits were explored, and
their amount of geometric entanglement determined by numeric and analytic
means. For this the Majorana representation, a generalization of the Bloch
sphere representation, can be employed to represent symmetric n qubit states by
n points on the surface of a unit sphere. Symmetries of this point distribution
simplify the determination of the entanglement, and enable the study of quantum
states in novel ways. Here it is shown that the duality relationship of
Platonic solids has a counterpart in the Majorana representation, and that in
general maximally entangled symmetric states neither correspond to anticoherent
spin states nor to spherical designs. The usability of symmetric states as
resources for measurement-based quantum computing is also discussed.Comment: 10 pages, 8 figures; submitted to Lecture Notes in Computer Science
(LNCS
- …