15 research outputs found

    Naïve Bayesian Classifier for Selecting Good/Bad Projects during the Early Stage of International Construction Bidding Decisions

    Get PDF
    Since the 1970s, revenues generated by Korean contractors in international construction have increased rapidly, exceeding USD 70 billion per year in recent years. However, Korean contractors face significant risks from market uncertainty and sensitivity to economic volatility and technical difficulties. As the volatility of these risks threatens project profitability, approximately 15% of bad projects were found to account for 74% of losses from the same international construction sector. Anticipating bad projects via preemptive risk management can better prevent losses so that contractors can enhance the efficiency of bidding decisions during the early stages of a project cycle. In line with these objectives, this paper examines the effect of such factors on the degree of project profitability. The Naïve Bayesian classifier is applied to identify a good project screening tool, which increases practical applicability using binomial variables with limited information that is obtainable in the early stages. The proposed model produced superior classification results that adequately reflect contractor views of risk. It is anticipated that when users apply the proposed model based on their own knowledge and expertise, overall firm profit rates will increase as a result of early abandonment of bad projects as well as the prioritization of good projects before final bidding decisions are made

    Comparison of brain connectivity between Internet gambling disorder and Internet gaming disorder: A preliminary study

    Get PDF
    Background and aims Given the similarities in clinical symptoms, Internet gaming disorder (IGD) is thought to be diagnostically similar to Internet-based gambling disorder (ibGD). However, cognitive enhancement and educational use of Internet gaming suggest that the two disorders derive from different neurobiological mechanisms. The goal of this study was to compare subjects with ibGD to those with IGD. Methods Fifteen patients with IGD, 14 patients with ibGD, and 15 healthy control subjects were included in this study. Resting-state functional magnetic resonance imaging data for all participants were acquired using a 3.0 Tesla MRI scanner (Philips, Eindhoven, The Netherlands). Seed-based analyses, the three brain networks of default mode, cognitive control, and reward circuitry, were performed. Results Both IGD and ibGD groups demonstrated decreased functional connectivity (FC) within the default-mode network (DMN) (family-wise error p  Discussion and conclusions The IGD and ibGD groups shared the characteristic of decreased FC in the DMN. However, the IGD group demonstrated increased FC within the cognitive network compared with both ibGD and healthy comparison groups

    SERS-based monitoring of the intracellular pH in endothelial cells:the influence of the extracellular environment and tumour necrosis factor-alpha

    Get PDF
    The intracellular pH plays an important role in various cellular processes. In this work, we describe a method for monitoring of the intracellular pH in endothelial cells by using surface enhanced Raman spectroscopy (SERS) and 4-mercaptobenzoic acid (MBA) anchored to gold nanoparticles as pH-sensitive probes. Using the Raman microimaging technique, we analysed changes in intracellular pH induced by buffers with acid or alkaline pH, as well as in endothelial inflammation induced by tumour necrosis factor-alpha (TNF alpha). The targeted nanosensor enabled spatial pH measurements revealing distinct changes of the intracellular pH in endosomal compartments of the endothelium. Altogether, SERS-based analysis of intracellular pH proves to be a promising technique for a better understanding of intracellular pH regulation in various subcellular compartments.This work was supported by the National Center of Science (grant PRELUDIUM DEC-2012/05/N/ST4/00218) and by the European Union from the resources of the European Regional Development Fund under the Innovative Economy Programme (grant coordinated by JCET-UJ, no. POIG.01.01.02-00-069/09). We also thank the University of Edinburgh School of Chemistry for the Neil Campbell Travel Award for supporting LJ. We also thank Joanna Jalmuzna from the Department of Mathematics and Computer Sciences, Jagiellonian University in Krakow for fitting the calibration curve using Gnuplot software

    Pareto Optimization in Robotics With Acceleration Constraints

    No full text
    86 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2008.Earlier work demonstrated a finite number of Pareto-optimal classes of motion plans when the robots are subjected to velocity bounds but no acceleration bounds. We prove that, when velocity and acceleration are bounded, the finiteness result still holds for systems involving only two robots. In tins setting, we separate acceleration bounds into two opposite assumptions: initial bounded accelerations and terminal bounded accelerations. Initial bounded accelerations are the cases when certain instantaneous stops are allowed. In contrast, terminal bounded accelerations allow infinite accelerations toward moving directions. We shows that either assumption does not alter the finiteness result for Pareto optimal path classes. General bounded accelerations can be derived by combining the two assumptions. However, in the general case, the acceleration bounds can lead to continua of Pareto optima. We give a counter examples involving three robots and explain the result in terms of the geometry of phase space. We also shows that with certain bounds on obstacle distributions finiteness results can be recovered.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD

    Electrically tunable metasurfaces: from direct to indirect mechanisms

    No full text
    Intensive development of nanofabrication processes has opened a new window to control electromagnetic waves using subwavelength nanostructures array, named metasurfaces. Although the metasurfaces have succeeded in achieving unprecedented functionality by arranging various shapes of nanostructures to modulate the properties of the incident light, inherent passive characteristics make it impossible to alter the engraved functions after it is fabricated. To give tunability to metasurfaces, various methods have been proposed by using a thermal, chemical, optical and physical stimulus. In particular, electrically tunable metasurfaces are attractive in that they are easy to control precisely and could be integrated into electronic devices. In this review, we categorize the representative electrical tuning mechanisms and research into three; voltage-operated modulation, electrochemical-driven modulation, and externally mediated modulation. Voltage-operated modulation uses materials that could be directly reorganized by an electric field, including liquid crystals and Drude materials. Electrochemical-driven modulation adjusts the optical properties of metasurfaces through electrochemical responses such as electrochromism and electrodeposition. Lastly, externally mediated modulation causes a change in the geometric parameters of metasurfaces or in the phase of the constituent materials by converting electrical energy into thermal or mechanical stimulation. This paper concludes after explaining the pros and cons of each mechanism and the new possibilities which electrically-responsive metasurfaces could bring about

    Coumarin-lipoic acid conjugates on silver nanoparticle-supported nanopipettes for in situ dual-mode monitoring of intracellular Cu(II) and potential chemodynamic therapy applications

    No full text
    Intracellular Cu(II) in the human body is essential to many physiological functions, and its disruption is connected to several diseases. Synthetic coumarin-lipoic acid (Cou-LA) conjugate-functionalized silver-nanoparticles decorated on nanopipettes (CSNs) were fabricated herein for the determination of intracellular Cu(II) via in situ dual Raman/fluorescence spectroscopy. The CSNs selectively sensed Cu(II) over other metal ions to induce enhanced Raman intensities and fluorescence quenching. The determination of Cu(II) in single HeLa cells was achieved in accordance with changes in the ratio of Raman intensities at 500 and 597 cm(-1) and fluorescence at 469 nm, which was ascribed to the capturing of Cu(II) by the CSNs. The Raman signals exhibited a good linear relationship with Cu(II) concentration from 10 to 75 mu M with R-2 = 0.956. The calibration curve indicated a local Cu(II) concentration of similar to 42.6 +/- 8.6 mu M in a single HeLa cell after pretreatment with 100 mu M Cu(II) for 1 h. CouLA exhibited negligible cytotoxicity in both normoxic and hypoxic HeLa cells. However, a significant reduction in cell viability occurred with the Cu(II)-Cou-LA complex. This cytotoxicity was attributed to the generation of reactive oxygen species via a Cu-catalyzed Fenton-like process in tumor microenvironments and was found to be applicable to chemodynamic therapy (CDT). The system fabricated in this study represents a novel strategy for intracellular dual-mode Cu(II) detection and CDT applications in cancer research.N
    corecore