93 research outputs found

    New concept for a regenerative and resorbable prosthesis for tendon and ligament. Physicochemical and biological characterization of PLA-braided biomaterial

    Full text link
    We present a concept for a new regenerative and resorbable prosthesis for tendon and ligament and characterize the physicomechanical and biological behavior of one of its components, a hollow braid made of poly-lactide acid (PLA) which is the load-bearing part of the prosthesis concept. The prosthesis consists of a braid, microparticles in its interior serving as cell carriers, and a surface non-adherent coating, all these parts being made of biodegradable materials. The PLA braid has a nonlinear convex stress-strain behavior with a Young modulus of 1370 +/- 90 MPa in the linear, stretched state, and after 12 months of hydrolytic degradation the modulus shows a reduction by a factor of four. Different disinfection methods were tested as to their efficiency in cleansing the braid and preparing it for cell culture. Fibroblasts of L929 line were grown on the PLA braid for 14 days, showing good adherence and proliferation. These studies validate the PLA braid for the intended purpose in the regenerative prosthesis concept. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 3228-3237, 2013This work has been developed thanks to the financial support of AITEX (Valencia, Spain). JME thanks Drs. Isabel Pascual, Andres Pena, and their team from Hospital Clinico of Valencia for their fine work.Araque Monrós, MC.; Gamboa Martinez, TC.; Gil Santos, L.; Gironés Bernabé, S.; Monleón Pradas, M.; Más Estellés, J. (2013). New concept for a regenerative and resorbable prosthesis for tendon and ligament. Physicochemical and biological characterization of PLA-braided biomaterial. Journal of Biomedical Materials Research Part A. 101A(11):3228-3237. doi:10.1002/jbm.a.34633S32283237101A11Vieira, A. C., Guedes, R. M., & Marques, A. T. (2009). Development of ligament tissue biodegradable devices: A review. Journal of Biomechanics, 42(15), 2421-2430. doi:10.1016/j.jbiomech.2009.07.019Kuo, C. K., Marturano, J. E., & Tuan, R. S. (2010). Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs. BMC Sports Science, Medicine and Rehabilitation, 2(1). doi:10.1186/1758-2555-2-20Butler, D. L., Juncosa-Melvin, N., Boivin, G. P., Galloway, M. T., Shearn, J. T., Gooch, C., & Awad, H. (2008). Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. Journal of Orthopaedic Research, 26(1), 1-9. doi:10.1002/jor.20456Lubeck, D. (2003). The costs of musculoskeletal disease: health needs assessment and health economics. Best Practice & Research Clinical Rheumatology, 17(3), 529-539. doi:10.1016/s1521-6942(03)00023-8COOPERJR, J., BAILEY, L., CARTER, J., CASTIGLIONI, C., KOFRON, M., KO, F., & LAURENCIN, C. (2006). Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials, 27(13), 2747-2754. doi:10.1016/j.biomaterials.2005.12.013Zheng, M. H., Chen, J., Kirilak, Y., Willers, C., Xu, J., & Wood, D. (2005). Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: Possible implications in human implantation. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 73B(1), 61-67. doi:10.1002/jbm.b.30170Lee, D. K. (2007). Achilles Tendon Repair with Acellular Tissue Graft Augmentation in Neglected Ruptures. The Journal of Foot and Ankle Surgery, 46(6), 451-455. doi:10.1053/j.jfas.2007.05.007Seldes, R. M., & Abramchayev, I. (2006). Arthroscopic Insertion of a Biologic Rotator Cuff Tissue Augmentation After Rotator Cuff Repair. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 22(1), 113-116. doi:10.1016/j.arthro.2005.10.005Miller, M. D., Peters, C. L., & Allen, B. (2006). Early Aseptic Loosening of a Total Knee Arthroplasty Due to Gore-Tex Particle–Induced Osteolysis. The Journal of Arthroplasty, 21(5), 765-770. doi:10.1016/j.arth.2005.07.021Dominkus, M., Sabeti, M., Toma, C., Abdolvahab, F., Trieb, K., & Kotz, R. I. (2006). Reconstructing the Extensor Apparatus with a New Polyester Ligament. Clinical Orthopaedics and Related Research, 453, 328-334. doi:10.1097/01.blo.0000229368.42738.b6Murray, A. W., & Macnicol, M. F. (2004). 10–16 year results of Leeds-Keio anterior cruciate ligament reconstruction. The Knee, 11(1), 9-14. doi:10.1016/s0968-0160(03)00076-0Krampera, M., Pizzolo, G., Aprili, G., & Franchini, M. (2006). Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone, 39(4), 678-683. doi:10.1016/j.bone.2006.04.020Caplan, A. I. (2005). Review: Mesenchymal Stem Cells: Cell–Based Reconstructive Therapy in Orthopedics. Tissue Engineering, 11(7-8), 1198-1211. doi:10.1089/ten.2005.11.1198Kimura, Y., Hokugo, A., Takamoto, T., Tabata, Y., & Kurosawa, H. (2008). Regeneration of Anterior Cruciate Ligament by Biodegradable Scaffold Combined with Local Controlled Release of Basic Fibroblast Growth Factor and Collagen Wrapping. Tissue Engineering Part C: Methods, 14(1), 47-57. doi:10.1089/tec.2007.0286WEI, X., LIN, L., HOU, Y., FU, X., ZHANG, J., MAO, Z., & YU, C. (2008). Construction of recombinant adenovirus co-expression vector carrying the human transforming growth factor-β1 and vascular endothelial growth factor genes and its effect on anterior cruciate ligament fibroblasts. Chinese Medical Journal, 121(15), 1426-1432. doi:10.1097/00029330-200808010-00017Spindler, K. P., Murray, M. M., Detwiler, K. B., Tarter, J. T., Dawson, J. M., Nanney, L. B., & Davidson, J. M. (2003). The biomechanical response to doses of TGF-β2 in the healing rabbit medial collateral ligament. Journal of Orthopaedic Research, 21(2), 245-249. doi:10.1016/s0736-0266(02)00145-6Kurtz, C. A., Loebig, T. G., Anderson, D. D., DeMeo, P. J., & Campbell, P. G. (1999). Insulin-Like Growth Factor I Accelerates Functional Recovery from Achilles Tendon Injury in a Rat Model. The American Journal of Sports Medicine, 27(3), 363-369. doi:10.1177/03635465990270031701Dahlgren, L. A., van der Meulen, M. C. H., Bertram, J. E. A., Starrak, G. S., & Nixon, A. J. (2002). Insulin-like growth factor-I improves cellular and molecular aspects of healing in a collagenase-induced model of flexor tendinitis. Journal of Orthopaedic Research, 20(5), 910-919. doi:10.1016/s0736-0266(02)00009-8Molloy, T., Wang, Y., & Murrell, G. A. C. (2003). The Roles of Growth Factors in Tendon and Ligament Healing. Sports Medicine, 33(5), 381-394. doi:10.2165/00007256-200333050-00004Costa, M. A., Wu, C., Pham, B. V., Chong, A. K. S., Pham, H. M., & Chang, J. (2006). Tissue Engineering of Flexor Tendons: Optimization of Tenocyte Proliferation Using Growth Factor Supplementation. Tissue Engineering, 12(7), 1937-1943. doi:10.1089/ten.2006.12.1937Jayankura, M., Boggione, C., Frisén, C., Boyer, O., Fouret, P., Saillant, G., & Klatzmann, D. (2003). In situgene transfer into animal tendons by injection of naked DNA and electrotransfer. The Journal of Gene Medicine, 5(7), 618-624. doi:10.1002/jgm.389Huang, D., Balian, G., & Chhabra, A. B. (2006). Tendon Tissue Engineering and Gene Transfer: The Future of Surgical Treatment. The Journal of Hand Surgery, 31(5), 693-704. doi:10.1016/j.jhsa.2005.10.022Lu, H. H., Cooper, J. A., Manuel, S., Freeman, J. W., Attawia, M. A., Ko, F. K., & Laurencin, C. T. (2005). Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials, 26(23), 4805-4816. doi:10.1016/j.biomaterials.2004.11.050Laurencin, C. T., & Freeman, J. W. (2005). Ligament tissue engineering: An evolutionary materials science approach. Biomaterials, 26(36), 7530-7536. doi:10.1016/j.biomaterials.2005.05.073Deng, D., Liu, W., Xu, F., Yang, Y., Zhou, G., Zhang, W. J., … Cao, Y. (2009). Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain. Biomaterials, 30(35), 6724-6730. doi:10.1016/j.biomaterials.2009.08.054Freeman, J. W., Woods, M. D., & Laurencin, C. T. (2007). Tissue engineering of the anterior cruciate ligament using a braid–twist scaffold design. Journal of Biomechanics, 40(9), 2029-2036. doi:10.1016/j.jbiomech.2006.09.025LOO, S., TAN, H., OOI, C., & BOEY, Y. (2006). Hydrolytic degradation of electron beam irradiated high molecular weight and non-irradiated moderate molecular weight PLLA. Acta Biomaterialia, 2(3), 287-296. doi:10.1016/j.actbio.2005.10.003Saha, S. K., & Tsuji, H. (2006). Effects of molecular weight and small amounts of d-lactide units on hydrolytic degradation of poly(l-lactic acid)s. Polymer Degradation and Stability, 91(8), 1665-1673. doi:10.1016/j.polymdegradstab.2005.12.009Iannace, S., Maffezzoli, A., Leo, G., & Nicolais, L. (2001). Influence of crystal and amorphous phase morphology on hydrolytic degradation of PLLA subjected to different processing conditions. Polymer, 42(8), 3799-3807. doi:10.1016/s0032-3861(00)00744-8Tsuji, H., Ikarashi, K., & Fukuda, N. (2004). Poly(l-lactide): XII. Formation, growth, and morphology of crystalline residues as extended-chain crystallites through hydrolysis of poly(l-lactide) films in phosphate-buffered solution. Polymer Degradation and Stability, 84(3), 515-523. doi:10.1016/j.polymdegradstab.2004.01.010Araque Monrós MC Más Estellés J Monleón Pradas M Gil Santos L Gironés Bernabé SGarlotta, D. (2001). Journal of Polymers and the Environment, 9(2), 63-84. doi:10.1023/a:1020200822435Wren, T. A. ., Yerby, S. A., Beaupré, G. S., & Carter, D. R. (2001). Mechanical properties of the human achilles tendon. Clinical Biomechanics, 16(3), 245-251. doi:10.1016/s0268-0033(00)00089-9Tsuji, H. (1995). Properties and morphologies of poly(?-lactide): 1. Annealing condition effects on properties and morphologies of poly(?-lactide). Polymer, 36(14), 2709-2716. doi:10.1016/0032-3861(95)93647-5Hooley, C. J., McCrum, N. G., & Cohen, R. E. (1980). The viscoelastic deformation of tendon. Journal of Biomechanics, 13(6), 521-528. doi:10.1016/0021-9290(80)90345-0Quynh, T. M., Mitomo, H., Nagasawa, N., Wada, Y., Yoshii, F., & Tamada, M. (2007). Properties of crosslinked polylactides (PLLA & PDLA) by radiation and its biodegradability. European Polymer Journal, 43(5), 1779-1785. doi:10.1016/j.eurpolymj.2007.03.007Chen, J., Xu, J., Wang, A., & Zheng, M. (2009). Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Review of Medical Devices, 6(1), 61-73. doi:10.1586/17434440.6.1.61Johnson, G. A., Tramaglini, D. M., Levine, R. E., Ohno, K., Choi, N.-Y., & L-Y. Woo, S. (1994). Tensile and viscoelastic properties of human patellar tendon. Journal of Orthopaedic Research, 12(6), 796-803. doi:10.1002/jor.1100120607Rees, J. S., & Jacobsen, P. H. (1997). Elastic modulus of the periodontal ligament. Biomaterials, 18(14), 995-999. doi:10.1016/s0142-9612(97)00021-5Magnusson, S. P., Aagaard, P., Rosager, S., Dyhre-Poulsen, P., & Kjaer, M. (2001). Load-displacement properties of the human triceps surae aponeurosisin vivo. The Journal of Physiology, 531(1), 277-288. doi:10.1111/j.1469-7793.2001.0277j.xMaganaris, C. N., & Paul, J. P. (2002). Tensile properties of the in vivo human gastrocnemius tendon. Journal of Biomechanics, 35(12), 1639-1646. doi:10.1016/s0021-9290(02)00240-3Maganaris, C. N., & Paul, J. P. (2000). Hysteresis measurements in intact human tendon. Journal of Biomechanics, 33(12), 1723-1727. doi:10.1016/s0021-9290(00)00130-5Chu, C. C. (1981). Hydrolytic degradation of polyglycolic acid: Tensile strength and crystallinity study. Journal of Applied Polymer Science, 26(5), 1727-1734. doi:10.1002/app.1981.070260527Yuan, X., Mak, A. F. ., & Yao, K. (2002). Comparative observation of accelerated degradation of poly(l-lactic acid) fibres in phosphate buffered saline and a dilute alkaline solution. Polymer Degradation and Stability, 75(1), 45-53. doi:10.1016/s0141-3910(01)00203-8Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32(8-9), 762-798. doi:10.1016/j.progpolymsci.2007.05.017Shearer, H., Ellis, M. J., Perera, S. P., & Chaudhuri, J. B. (2006). Effects of Common Sterilization Methods on the Structure and Properties of Poly(D,L Lactic-Co-Glycolic Acid) Scaffolds. Tissue Engineering, 12(10), 2717-2727. doi:10.1089/ten.2006.12.2717Juncosa-Melvin, N., Boivin, G. P., Galloway, M. T., Gooch, C., West, J. R., & Butler, D. L. (2006). Effects of Cell-to-Collagen Ratio in Stem Cell-Seeded Constructs for Achilles Tendon Repair. Tissue Engineering, 12(4), 681-689. doi:10.1089/ten.2006.12.681Hoffmann, A. (2006). Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. Journal of Clinical Investigation, 116(4), 940-952. doi:10.1172/jci22689ALTMAN, G., HORAN, R., MARTIN, I., FARHADI, J., STARK, P., VOLLOCH, V., … KAPLAN, D. L. (2002). Cell differentiation by mechanical stress. The FASEB Journal, 16(2), 270-272. doi:10.1096/fj.01-0656fj

    Mechanics rules cell biology

    Get PDF
    Cells in the musculoskeletal system are subjected to various mechanical forces in vivo. Years of research have shown that these mechanical forces, including tension and compression, greatly influence various cellular functions such as gene expression, cell proliferation and differentiation, and secretion of matrix proteins. Cells also use mechanotransduction mechanisms to convert mechanical signals into a cascade of cellular and molecular events. This mini-review provides an overview of cell mechanobiology to highlight the notion that mechanics, mainly in the form of mechanical forces, dictates cell behaviors in terms of both cellular mechanobiological responses and mechanotransduction

    SBC2007-175814 EFFECT OF MECHANICAL STIMULATION ON THE BIOMECHANICS OF STEM CELL - COLLAGEN SPONGE CONSTRUCTS FOR PATELLAR TENDON REPAIR

    No full text
    INTRODUCTION Tendons (rotator cuff, Achilles and patellar tendons) are among the most commonly injured soft tissues This study was undertaken to determine how mechanical stimulation in culture of MSC-type I collagen sponge constructs affects the biomechanics and histology of rabbit patellar tendon (PT) defect repairs 12 weeks after surgery. The hypotheses to be tested were that mechanical stimulation would improve: 1) the linear stiffness and linear modulus of the in vitro construct after 2 weeks in culture, and 2) repair biomechanics and histological appearance 12 weeks after implantation. 3) We also hypothesized that the construct and repair stiffness and modulus would be positively correlated, suggesting that the in vitro measure might be a predictor of in vivo repair outcome
    • …
    corecore