79 research outputs found

    Circular Dichroic Power of Chiral Spiro Aromatics. Theoretical Calculation of the CD and UV Spectra of 2,2\u27 -Spirobi [2Hbenzeindene ] Derivatives

    Get PDF
    The CD and UV spectra of (2S)-2,2\u27-spirobi[2H-benz[e]indene]- 1,1\u27(3H,3\u27H)-dione (2) and (IR,I\u27S,2S)-I,I\u27,3,3\u27-tetrahydro-2,2\u27-spirobi[ 2H -benz[e]indene]-I,I\u27 -diyl diacetate (3) were theoretical1y calculated by the application of the Jt-electron SCF-CI-DV MO method. The shape of component CD and UV bands was approximated by method (A) of the Gaussian distribution, or by method (B) employing the observed band shape of the UV spectra of model compounds. The calculated CD and UV curves were in good agreement with the observed ones. For compound 2, method (A), calcd CD, Aox! = 318.5 nm (As = +5.8), 250.0 (-63.7), 213.7 (+90.8); obsd. CD, J"" = 336.2 nm (1\u2711; = +11.9), 253.2 (-96.1), 214.0 (+ 1\u2712.1). For compound 3, method (A), calcd CD, J,e,! = 279.3 nm (As = +6.5), 224.2 (-590.2), 213.7 (+753.7); obsd. CD, J\u27e" = 285.0 nm (As = +4.4), 230.2 (-961.5), 221.6 (+567.1). The absolute stereostructures of chiral spiro aromatics 2 and have been thus established by the calculation. The mechanism of the widely spread and weak CD Cotton effects of diketone 2 has been also clarified by the calculation. The calculated CD and UV spectral curves of compound 3 obtained by the application of method (B) were in excellent agreement with the observed ones: calcd CD, Ae<t = 282.5 nm (As = +10.2), 231.5 (-1139.5), 221.2 (+474.0); obsd. CD, J,,,! = 285.0 nm (As = + 4.4), 230.2 (-961.5), 221.6 (+ 567.1)

    Enhancement of the antigen-specific cytotoxic T lymphocyte-inducing ability in the PMDC11 leukemic plasmacytoid dendritic cell line via lentiviral vector-mediated transduction of the caTLR4 gene.

    Get PDF
    The aim of the present study was to enhance the efficiency of leukemia immunotherapy by increasing the antigen-specific cytotoxic T lymphocyte-inducing ability of leukemia cells. The leukemic plasmacytoid dendritic cell line PMDC05 containing the HLA-A02/24 antigen, which was previously established in our laboratory (Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan), was used in the present study. It exhibited higher expression levels of CD80 following transduction with lentiviruses encoding the CD80 gene. This CD80-expressing PMDC05 was named PMDC11. In order to establish a more potent antigen-presenting cell for cellular immunotherapy of tumors or severe infections, PMDC11 cells were transduced with a constitutively active (ca) toll-like receptor 4 (TLR4) gene using the Tet-On system (caTLR4-PMDC11). CD8(+) T cells from healthy donors with HLA-A02 were co-cultured with mutant WT1 peptide-pulsed PMDC11, lipopolysaccharide (LPS)-stimulated PMDC11 or caTLR4-PMDC11 cells. Interleukin (IL)-2 (50 IU/ml) and IL-7 (10 ng/ml) were added on day three of culture. Priming with mutant WT1 peptide-pulsed PMDC11, LPS-stimulated PMDC11 or caTLR4-PMDC11 cells was conducted once per week and two thirds of the IL-2/IL-7 containing medium was replenished every 3-4 days. Immediately prior to the priming with these various PMDC11 cells, the cultured cells were analyzed for the secretion of interferon (IFN)-γ in addition to the percentage and number of CD8(+)/WT1 tetramer(+) T cells using flow cytometry. caTLR4-PMDC11 cells were observed to possess greater antigen-presenting abilities compared with those of PMDC11 or LPS-stimulated PMDC11 cells in a mixed leukocyte culture. CD8 T cells positive for the WT1 tetramer were generated following 3-4 weeks of culture and CD8(+)/WT1 tetramer+ T cells were markedly increased in caTLR4-PMDC11-primed CD8(+) T cell culture compared with PMDC11 or LPS-stimulated PMDC11-primed CD8(+) T cell culture. These CD8(+) T cells co-cultured with caTLR4-PMDC11 cells were demonstrated to secrete IFN-γ and to be cytotoxic to WT1-expressing target cells. These data suggested that the antigen-specific cytotoxic T lymphocyte (CTL)-inducing ability of PMDC11 was potentiated via transduction of the caTLR4 gene. The present study also suggested that caTLR4-PMDC11 cells may be applied as potent antigen-presenting cells for generating antigen-specific CTLs in adoptive cellular immunotherapy against tumors and severe viral infections

    Posttraumatic Cranial Cystic Fibrous Dysplasia

    Get PDF
    A 14-year-old was girl admitted to our hospital with a subcutaneous mass of the occipital head. The mass had grown for 6 years, after she had sustained a head injury at the age of 6, and was located directly under a previous wound. Skull X-ray Photograph (xp), computed tomography (CT), and magnetic resonance imaging (MRI) showed a bony defect and cystic changes in the skull corresponding to a subcutaneous mass. Bone scintigraphy revealed partial accumulation. The patient underwent total removal of the skull mass, and the diagnosis from the pathological findings of the cyst wall was fibrous dysplasia (FD). The radiographic findings for cystic cranial FD can be various. Progressive skull disease has been reported to be associated with head trauma, but the relationship between cranial FD and head trauma has not been previously reported. Previous studies have suggested that c-fos gene expression is a key mechanism in injury-induced FD

    Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping

    Get PDF
    Prolonged expression of the CRISPR-Cas9 nuclease and gRNA from viral vectors may cause off-target mutagenesis and immunogenicity. Thus, a transient delivery system is needed for therapeutic genome editing applications. Here, we develop an extracellular nanovesicle-based ribonucleoprotein delivery system named NanoMEDIC by utilizing two distinct homing mechanisms. Chemical induced dimerization recruits Cas9 protein into extracellular nanovesicles, and then a viral RNA packaging signal and two self-cleaving riboswitches tether and release sgRNA into nanovesicles. We demonstrate efficient genome editing in various hard-to-transfect cell types, including human induced pluripotent stem (iPS) cells, neurons, and myoblasts. NanoMEDIC also achieves over 90% exon skipping efficiencies in skeletal muscle cells derived from Duchenne muscular dystrophy (DMD) patient iPS cells. Finally, single intramuscular injection of NanoMEDIC induces permanent genomic exon skipping in a luciferase reporter mouse and in mdx mice, indicating its utility for in vivo genome editing therapy of DMD and beyond

    Stomatin Inhibits Pannexin-1-Mediated Whole-Cell Currents by Interacting with Its Carboxyl Terminal

    Get PDF
    The pannexin-1 (Panx1) channel (often referred to as the Panx1 hemichannel) is a large-conductance channel in the plasma membrane of many mammalian cells. While opening of the channel is potentially detrimental to the cell, little is known about how it is regulated under physiological conditions. Here we show that stomatin inhibited Panx1 channel activity. In transfected HEK-293 cells, stomatin reduced Panx1-mediated whole-cell currents without altering either the total or membrane surface Panx1 protein expression. Stomatin coimmunoprecipitated with full-length Panx1 as well as a Panx1 fragment containing the fourth membrane-spanning domain and the cytosolic carboxyl terminal. The inhibitory effect of stomatin on Panx1-mediated whole-cell currents was abolished by truncating Panx1 at a site in the cytosolic carboxyl terminal. In primary culture of mouse astrocytes, inhibition of endogenous stomatin expression by small interfering RNA enhanced Panx1-mediated outward whole-cell currents. These observations suggest that stomatin may play important roles in astrocytes and other cells by interacting with Panx1 carboxyl terminal to limit channel opening
    corecore