56 research outputs found

    Enhanced O-GlcNAcylation Mediates Cytoprotection under Proteasome Impairment by Promoting Proteasome Turnover in Cancer Cells

    Get PDF
    The proteasome is a therapeutic target in cancer, but resistance to proteasome inhibitors often develops owing to the induction of compensatory pathways. Through a genome-wide siRNA screen combined with RNA sequencing analysis, we identified hexokinase and downstream O-GlcNAcylation as cell survival factors under proteasome impairment. The inhibition of O-GlcNAcylation synergistically induced massive cell death in combination with proteasome inhibition. We further demonstrated that O-GlcNAcylation was indispensable for maintaining proteasome activity by enhancing biogenesis as well as proteasome degradation in a manner independent of Nrf1, a well-known compensatory transcription factor that upregulates proteasome gene expression. Our results identify a pathway that maintains proteasome function under proteasome impairment, providing potential targets for cancer therapy

    Trans-omics Impact of Thymoproteasome in Cortical Thymic Epithelial Cells

    Get PDF
    The thymic function to produce self-protective and self-tolerant T cells is chiefly mediated by cortical thymic epithelial cells (cTECs) and medullary TECs (mTECs). Recent studies including single-cell transcriptomic analyses have highlighted a rich diversity in functional mTEC subpopulations. Because of their limited cellularity, however, the biochemical characterization of TECs, including the proteomic profiling of cTECs and mTECs, has remained unestablished. Utilizing genetically modified mice that carry enlarged but functional thymuses, here we show a combination of proteomic and transcriptomic profiles for cTECs and mTECs, which identified signature molecules that characterize a developmental and functional contrast between cTECs and mTECs. Our results reveal a highly specific impact of the thymoproteasome on proteasome subunit composition in cTECs and provide an integrated trans-omics platform for further exploration of thymus biology

    Foxn1−β5t転写制御軸は胸腺でのCD8陽性T細胞生成を制御する

    Get PDF
    The thymus is an organ that produces functionally competent T cells that protect us from pathogens and malignancies. Foxn1 is a transcription factor that is essential for thymus organogenesis; however, the direct target for Foxn1 to actuate thymic T-cell production is unknown. Here we show that a Foxn1-binding cis-regulatory element promotes the transcription of β5t, which has an essential role in cortical thymic epithelial cells to induce positive selection of functionally competent CD8+ T cells. A point mutation in this genome element results in a defect in β5t expression and CD8+ T-cell production in mice. The results reveal a Foxn1-β5t transcriptional axis that governs CD8+ T-cell production in the thymus

    CD153/CD30 signaling promotes age-dependent tertiary lymphoid tissue expansion and kidney injury

    Get PDF
    高齢者腎臓病を悪化させる原因細胞・分子の同定に成功. 京都大学プレスリリース. 2021-11-30.A new drug target for kidney disease. 京都大学プレスリリース. 2021-11-30.Tertiary lymphoid tissues (TLTs) facilitate local T- and B-cell interactions in chronically inflamed organs. However, the cells and molecular pathways that govern TLT formation are poorly defined. Here we identify TNF superfamily CD153-CD30 signaling between two unique age-dependent lymphocyte subpopulations, CD153⁺PD-1⁺CD4⁺ senescence-associated T (SAT) cells and CD30+T-bet+ age-associated B cells (ABCs), as a driver for TLT expansion. SAT cells, which produced ABC-inducing factors IL21 and IFNγ, and ABCs progressively accumulated within TLTs in aged kidneys after injury. Notably, in kidney injury models, CD153 or CD30 deficiency impaired functional SAT cell induction, which resulted in reduced ABC numbers and attenuated TLT formation with improved inflammation, fibrosis and renal function. Attenuated TLT formation after transplantation of CD153-deficient bone marrow further supported the importance of CD153 in immune cells. Clonal analysis revealed that SAT cells and ABCs in the kidneys arose from both local differentiation and recruitment from the spleen. In the synovium of aged rheumatoid arthritis patients, T peripheral helper/T follicular helper cells and ABCs also expressed CD153 and CD30, respectively. Together, our data reveal a previously unappreciated function of CD153-CD30 signaling in TLT formation and propose targeting CD153-CD30 signaling pathway as a therapeutic target for slowing kidney disease progression

    ER-Resident Transcription Factor Nrf1 Regulates Proteasome Expression and Beyond

    No full text
    Protein folding is a substantively error prone process, especially when it occurs in the endoplasmic reticulum (ER). The highly exquisite machinery in the ER controls secretory protein folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol; these misfolded proteins are then degraded by the ubiquitin–proteasome system termed as the ER-associated degradation (ERAD). The 26S proteasome is a multisubunit protease complex that recognizes and degrades ubiquitinated proteins in an ATP-dependent manner. The complex structure of the 26S proteasome requires exquisite regulation at the transcription, translation, and molecular assembly levels. Nuclear factor erythroid-derived 2-related factor 1 (Nrf1; NFE2L1), an ER-resident transcription factor, has recently been shown to be responsible for the coordinated expression of all the proteasome subunit genes upon proteasome impairment in mammalian cells. In this review, we summarize the current knowledge regarding the transcriptional regulation of the proteasome, as well as recent findings concerning the regulation of Nrf1 transcription activity in ER homeostasis and metabolic processes

    Characterization of the Testis-specific Proteasome Subunit α4s in Mammals

    Full text link
    Frontal view of the High Altar, with painting by Guglielmo Cortese, Crucifixion of St. Andrew (1668), depicting the martyrdom of the saint; Sant' Andrea al Quirinale was a project for the Jesuits funded by Prince Camillo Pamphili. It is oval in plan, with the entrance and the altar facing one another on the short axis. Framed by massive pairs of dusty-pink marble columns, with an eccentric inward-curving pediment, the altar aedicule is the focal point of the interior. Source: Grove Art Online; http://www.groveart.com/ (accessed 11/20/2007

    Redundant Roles of Rpn10 and Rpn13 in Recognition of Ubiquitinated Proteins and Cellular Homeostasis

    No full text
    <div><p>Intracellular proteins tagged with ubiquitin chains are targeted to the 26S proteasome for degradation. The two subunits, Rpn10 and Rpn13, function as ubiquitin receptors of the proteasome. However, differences in roles between Rpn10 and Rpn13 in mammals remains to be understood. We analyzed mice deficient for Rpn13 and Rpn10. Liver-specific deletion of either Rpn10 or Rpn13 showed only modest impairment, but simultaneous loss of both caused severe liver injury accompanied by massive accumulation of ubiquitin conjugates, which was recovered by re-expression of either Rpn10 or Rpn13. We also found that mHR23B and ubiquilin/Plic-1 and -4 failed to bind to the proteasome in the absence of both Rpn10 and Rpn13, suggesting that these two subunits are the main receptors for these UBL-UBA proteins that deliver ubiquitinated proteins to the proteasome. Our results indicate that Rpn13 mostly plays a redundant role with Rpn10 in recognition of ubiquitinated proteins and maintaining homeostasis in <i>Mus musculus</i>.</p></div

    Rpn13 deficiency in the liver impairs degradation of ubiquitinated proteins.

    No full text
    <p>(A) Immunoblot analysis of liver lysates from 8-week-old control and Rpn13<sup>LKO</sup> mice with antibodies against the indicated proteins. Asterisk indicates a nonspecific band. (B) Lysates from control and Rpn13<sup>LKO</sup> livers were fractionated by glycerol gradient centrifugation (8 to 32% glycerol from fraction 1 to 30) and an equal amount of each fraction was used for immunoblot analysis using antibodies against the indicated proteins. Asterisks indicate nonspecific bands. (C) Each fraction of (B) was assayed for chymotrypsin-like activity using Suc-LLVY-AMC as a substrate. (D) The 26S proteasome fractions of (C) (fractions 20–23) were subjected to the assay of chymotrypsin-like activity (left panel), and degradation of <sup>35</sup>S-labeled cIAP1 with or without ubiquitination was measured and normalized by chymotrypsin-like activity (right panel). Data are mean ±standard deviations from triplicate experiments. **p < 0.01. (E) The deubiquitinating activities of 26S proteasome fractions of (C) were measured using ubiquitin-AMC as a substrate. Data are mean ± standard deviations from triplicate experiments. **p < 0.01</p

    Defective binding of ubiquitinated and UBL-UBA proteins to Rpn10ΔUIM/ΔRpn13 proteasomes.

    No full text
    <p>(A) Homogenates from mouse livers were immunoprecipitated with an anti-Rpt6 antibody and subjected to immunoblotting with the indicated antibodies. Values for the relative band intensities of ubiquitin normalized by tubulin (input) or Rpt6 (IP) are shown as A and B, with the control being set to one. Values for B/A indicate the relative amount of bound ubiquitinated proteins to the amount of input ubiquitinated proteins. (B) HEK293T cells were transfected with siRNA against Rpn10, Rpn13, or Uch37. Where indicated, cells were transfected with a mixture of siRNAs. After 96h, cell extracts were subjected to SDS-PAGE, followed by immunoblotting with the indicated antibodies.</p
    corecore