107 research outputs found

    Spin orientation in an ultrathin CoO/PtFe double-layer with perpendicular exchange coupling

    No full text
    International audienceWe studied by soft x-ray absorption spectroscopy the magnetization axis in an 4nm thin CoO (111) layer exchange-coupled to an ultra thin L1 0 PtFe layer with perpendicular magnetic anisotropy. The angular dependence of the linear magnetic dichroism at 10K and the relative variations of the spectral features provide a full description of the spin orientation in this antiferromagnetic layer. The spins are found in the film plane, pointing along the 110 direction. This results is discussed in relation to the film strain and preferential occupation of t 2g orbitals.The strong orthogonal coupling between Co and Fe spins should be at the origin of the robustness of the exchange bias effect foun in this bilayer system

    Robust perpendicular exchange coupling in an ultrathin CoO/PtFe double layer: Strain and spin orientation

    Get PDF
    5 pagesInternational audienceWe report on the exchange coupling and magnetic properties of a strained ultrathin CoO/PtFe double layer with perpendicular magnetic anisotropy. The cobalt oxide growth by reactive molecular beam epitaxy on a Pt-terminated PtFe/Pt(001) surface gives rise to a hexagonal surface and a monoclinic distorted CoO 3 nm film at room temperature. This distorted ultrathin CoO layer couples with the PtFe(001) layer establishing a robust perpendicular exchange bias shift. Soft x-ray absorption spectroscopy provides a full description of the spin orientations in the CoO/PtFe double layer. The exchange bias shift is preserved up to the N'eel antiferromagnetic ordering temperature of TN = 293 K. This unique example of selfsame value for blocking and ordering temperatures, yet identical to the bulk ordering temperature, is likely related to the original strain-induced distortion and strengthened interaction between the two well-ordered spin layers

    Robust perpendicular exchange coupling in an ultrathin CoO/PtFe double layer: strain and spin orientation

    Get PDF
    Sem informaçãoWe report on the exchange coupling and magnetic properties of a strained ultrathin CoO/PtFe double layer with perpendicular magnetic anisotropy. The cobalt oxide growth by reactive molecular beam epitaxy on a Pt-terminated PtFe/Pt(001) surface gives rise to a hexagonal surface and a monoclinic distorted CoO 3 nm film at room temperature. This distorted ultrathin CoO layer couples with the PtFe(001) layer establishing a robust perpendicular exchange bias shift. Soft x-ray absorption spectroscopy provides a full description of the spin orientations in the CoO/PtFe double layer. The exchange bias shift is preserved up to the Néel antiferromagnetic ordering temperature of TN = 293 K. This unique example of selfsame value for blocking and ordering temperatures, yet identical to the bulk ordering temperature, is likely related to the original strain-induced distortion and strengthened interaction between the two well-ordered spin layers.We report on the exchange coupling and magnetic properties of a strained ultrathin CoO/PtFe double layer with perpendicular magnetic anisotropy. The cobalt oxide growth by reactive molecular beam epitaxy on a Pt-terminated PtFe/Pt(001) surface gives rise to a hexagonal surface and a monoclinic distorted CoO 3 nm film at room temperature. This distorted ultrathin CoO layer couples with the PtFe(001) layer establishing a robust perpendicular exchange bias shift. Soft x-ray absorption spectroscopy provides a full description of the spin orientations in the CoO/PtFe double layer. The exchange bias shift is preserved up to the Néel antiferromagnetic ordering temperature of TN = 293 K. This unique example of selfsame value for blocking and ordering temperatures, yet identical to the bulk ordering temperature, is likely related to the original strain-induced distortion and strengthened interaction between the two well-ordered spin layers.881415Sem informaçãoSem informaçãoSem informaçã

    Magnetic anisotropy in Fe phthalocyanine film deposited on Si(110) substrate: Standing configuration

    Get PDF
    In this contribution we report on the structural and magnetic properties of an Fe phthalocyanine (FePc) thin film deposited on a silicon substrate. The planar FePc molecules order spontaneously in a standing configuration, i.e., with the molecular plane perpendicular to the substrate. The x-ray linear polarized absorption and x-ray magnetic circular dichroism experiments at the Fe-L2,3 edges at T = 6 K were performed, concluding that at this temperature the film displays magnetic anisotropy with the main easy axis perpendicular to the substrate. This result is explained in terms of the FePc single molecule anisotropy which has its larger moment in the molecule plane. Thus, the standing configuration in polycrystalline thin films favors statistically that, at the macroscopic array level, the magnetic easy anisotropy axis is normal to the substrate.The financial support of the Spanish MINECO MAT2014-53921-R and Aragonese DGA-IMANA E34, both cofunded by Fondo Social Europeo and European Union FEDER funds is acknowledged. T.G. acknowledges support from the National Science Foundation (NSF) DMR0847552 and the W.M. Keck Foundation. The XMCD experiments were performed at the ID08 (now ID32) beamline of the ESRF, experiment HE2486. This is a highly collaborative research. The experiments were conceived jointly, the data was extensively debated and the paper was written by multiple iteration between all the coauthors. Samples were fabricated, characterized and prepared at UCSD (T.G. and I.K.S.). The research at UCSD was supported by the Office of Basic Energy Science, U.S. Department of Energy, BES-DMS funded by the Department of Energy’s Office of Basic Energy Science, DMR under Grant No. DE FG02 87ER-45332.Peer reviewe

    Spin tuning of electron-doped metal-phthalocyanine layers

    Get PDF
    The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state

    Energy-dispersive X-ray absorption spectroscopy at LNLS: Investigation on strongly correlated metal oxides

    Get PDF
    An energy-dispersive X-ray absorption spectroscopy beamline mainly dedicated to X-ray magnetic circular dichroism (XMCD) and material science under extreme conditions has been implemented in a bending-magnet port at the Brazilian Synchrotron Light Laboratory. Here the beamline technical characteristics are described, including the most important aspects of the mechanics, optical elements and detection set-up. The beamline performance is then illustrated through two case studies on strongly correlated transition metal oxides: an XMCD insight into the modifications of the magnetic properties of Cr-doped manganites and the structural deformation in nickel perovskites under high applied pressure. © 2010 International Union of Crystallography. Printed in Singapore - all rights reserved.Fil: Cezar, Julio C.. Laboratorio Nacional de Luz Síncrotron; BrasilFil: Souza Neto, Narcizo M.. Laboratorio Nacional de Luz Síncrotron; BrasilFil: Piamonteze, Cínthia. Laboratorio Nacional de Luz Síncrotron; BrasilFil: Tamura, Edilson. Laboratorio Nacional de Luz Síncrotron; BrasilFil: Garcia, Flávio. Laboratorio Nacional de Luz Síncrotron; BrasilFil: Carvalho, Edson J.. Laboratorio Nacional de Luz Síncrotron; BrasilFil: Neueschwander, Régis T.. Laboratorio Nacional de Luz Síncrotron; BrasilFil: Ramos, Aline Y.. Centre National de la Recherche Scientifique; FranciaFil: Tolentino, Hélio C. N.. Centre National de la Recherche Scientifique; FranciaFil: Caneiro, Alberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Massa, Nestor Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Química Inorgánica "Dr. Pedro J. Aymonino". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Química Inorgánica "Dr. Pedro J. Aymonino"; ArgentinaFil: Martinez Lope, Maria Jesus. Instituto de Ciencia de Materiales de Madrid; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Alonso, José Antonio. Instituto de Ciencia de Materiales de Madrid; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Itié, Jean Paul. L'Orme des Merisiers. Synchrotron SOLEIL; Franci

    Coupling of single, double, and triple-decker metal-phthalocyanine complexes to ferromagnetic and antiferromagnetic substrates

    Get PDF
    We report a survey of the magnetic properties of metal-organic complexes coupled to ferromagnetic and antiferromagnetic surfaces. Using element-resolved X-ray magnetic circular dichroism, we investigate the magnetism of single, double, and triple-decker phthalocyanines focusing on MnPc, TbPc, and TbPc deposited on Ni, Mn, and CoO thin films. Depending on the number of Pc ligands, we find that the metal ions within the molecules couple either parallel or antiparallel to a ferromagnetic substrate. Whereas single-decker complexes such as MnPc form a unique magnetic entity with ferromagnetic films, the intrinsic single molecule magnet properties of TbPc and TbPc remain largely unaltered. TbPc deposited on perpendicularly magnetized Ni films exhibits enhanced magnetic stability compared to TbPc in molecular crystals, opposite to TbPc deposited on in-plane magnetized Ni. Depending on the competition between uniaxial anisotropy, superexchange, and Zeeman interaction, the magnetic moment of TbPc can be aligned parallel or antiparallel to that of the substrate by modulating the intensity of an external magnetic field. This occurs also for TbPc, but the substrate-induced exchange coupling in triple-decker molecules is found to be short-ranged, that is, limited to the Tb ion closer to the ferromagnetic surface. Finally, we discuss the conditions required to establish exchange bias between molecules and antiferromagnetic substrates. We show that TbPc deposited on antiferromagnetic Mn thin films exhibits both exchange bias and enhanced coercivity when field cooled parallel to the out-of-plane easy axis. However, exchange bias does not extend to all molecules on the surface. On oxide antiferromagnets such as CoO we find no evidence of exchange bias for either TbPc or MnPc
    corecore