44 research outputs found

    FATS is a transcriptional target of p53 and associated with antitumor activity

    Get PDF
    Frequent mutations of p53 in human cancers exemplify its crucial role as a tumor suppressor transcription factor, and p21, a transcriptional target of p53, plays a central role in surveillance of cell-cycle checkpoints. Our previous study has shown that FATS stabilize p21 to preserve genome integrity. In this study we identified a novel transcript variant of FATS (GenBank: GQ499374) through screening a cDNA library from mouse testis, which uncovered the promoter region of mouse FATS. Mouse FATS was highly expressed in testis. The p53-responsive elements existed in proximal region of both mouse and human FATS promoters. Functional study indicated that the transcription of FATS gene was activated by p53, whereas such effect was abolished by site-directed mutagenesis in the p53-RE of FATS promoter. Furthermore, the expression of FATS increased upon DNA damage in a p53-dependent manner. FATS expression was silent or downregulated in human cancers, and overexpression of FATS suppressed tumorigenicity in vivo independently of p53. Our results reveal FATS as a p53-regulated gene to monitor genomic stability

    Seeing Our Blind Spots: Smart Glasses-Based Simulation to Increase Design Students’ Awareness of Visual Impairment

    Get PDF
    As the population ages, many will acquire visual impairments. To improve design for these users, it is essential to build awareness of their perspective during everyday routines, especially for design students. Although several visual impairment simulation toolkits exist in both academia and as commercial products, analog, and static visual impairment simulation tools do not simulate effects concerning the user’s eye movements. Meanwhile, VR and video see-through-based AR simulation methods are constrained by smaller fields of view when compared with the natural human visual field and also suffer from vergence-accommodation conflict (VAC) which correlates with visual fatigue, headache, and dizziness. In this paper, we enable an on-the-go, VAC-free, visually impaired experience by leveraging our optical see-through glasses. The FOV of our glasses is approximately 160 degrees for horizontal and 140 degrees for vertical, and participants can experience both losses of central vision and loss of peripheral vision at different severities. Our evaluation (n =14) indicates that the glasses can significantly and effectively reduce visual acuity and visual field without causing typical motion sickness symptoms such as headaches and or visual fatigue. Questionnaires and qualitative feedback also showed how the glasses helped to increase participants’ awareness of visual impairment

    A population-specific material model for sagittal craniosynostosis to predict surgical shape outcomes

    Get PDF
    Sagittal craniosynostosis consists of premature fusion (ossification) of the sagittal suture during infancy, resulting in head deformity and brain growth restriction. Spring-assisted cranioplasty (SAC) entails skull incisions to free the fused suture and insertion of two springs (metallic distractors) to promote cranial reshaping. Although safe and effective, SAC outcomes remain uncertain. We aimed hereby to obtain and validate a skull material model for SAC outcome prediction. Computed tomography data relative to 18 patients were processed to simulate surgical cuts and spring location. A rescaling model for age matching was created using retrospective data and validated. Design of experiments was used to assess the effect of different material property parameters on the model output. Subsequent material optimization—using retrospective clinical spring measurements—was performed for nine patients. A population-derived material model was obtained and applied to the whole population. Results showed that bone Young’s modulus and relaxation modulus had the largest effect on the model predictions: the use of the population-derived material model had a negligible effect on improving the prediction of on-table opening while significantly improved the prediction of spring kinematics at follow-up. The model was validated using on-table 3D scans for nine patients: the predicted head shape approximated within 2 mm the 3D scan model in 80% of the surface points, in 8 out of 9 patients. The accuracy and reliability of the developed computational model of SAC were increased using population data: this tool is now ready for prospective clinical application

    Translocation of silver nanoparticles in the ex vivo human placenta perfusion model characterized by single particle ICP-MS

    Get PDF
    With the extensive use of silver nanoparticles (AgNPs) in various consumer products their potential toxicity is of great concern especially for highly sensitive population groups such as pregnant women and even the developing fetus. To understand if AgNPs are taken up and cross the human placenta, we studied their translocation and accumulation in the human ex vivo placenta perfusion model by single particle ICP-MS (spICP-MS). The impact of different surface modifications on placental transfer was assessed by AgNPs with two different modifications: polyethylene glycol (AgPEG NPs) and sodium carboxylate (AgCOONa NPs). AgNPs and ionic Ag were detected in the fetal circulation in low but not negligible amounts. Slightly higher Ag translocation across the placental barrier for perfusion with AgPEG NPs and higher AgNP accumulation in placental tissue for perfusion with AgCOONa NPs were observed. Since these AgNPs are soluble in water, we tried to distinguish between the translocation of dissolved and particulate Ag. Perfusion with AgNO3 revealed the formation of Ag containing NPs in both circulations over time, of which the amount and their size in the fetal circulation were comparable to those from perfusion experiments with both AgNP types. Although we were not able to clarify whether intact AgNPs and/or Ag precipitates from dissolved Ag cross the placental barrier, our study highlights that uptake of Ag ions and/or dissolution of AgNPs in the tissue followed by re-precipitation in the fetal circulation needs to be considered as an important pathway in studies of AgNP translocation across biological barriers

    Functional Study of miR-27a in Human Hepatic Stellate Cells by Proteomic Analysis: Comprehensive View and a Role in Myogenic Tans-Differentiation

    No full text
    <div><p>We previous reported that miR-27a regulates lipid metabolism and cell proliferation during hepatic stellate cells (HSCs) activation. To further explore the biological function and underlying mechanisms of miR-27a in HSCs, global protein expression affected by overexpression of miR-27a in HSCs was analyzed by a cleavable isotope-coded affinity tags (cICAT) based comparative proteomic approach. In the present study, 1267 non-redundant proteins were identified with unique accession numbers (score ≄1.3, i.e. confidence ≄95%), among which 1171 were quantified and 149 proteins (12.72%) were differentially expressed with a differential expression ratio of 1.5. We found that up-regulated proteins by miR-27a mainly participate in cell proliferation and myogenesis, while down-regulated proteins were the key enzymes involved in de novo lipid synthesis. The expression of a group of six miR-27a regulated proteins was validated and the function of one miR-27a regulated protein was further validated. The results not only delineated the underlying mechanism of miR-27a in modulating fat metabolism and cell proliferation, but also revealed a novel role of miR-27a in promoting myogenic tans-differentiation during HSCs activation. This study also exemplified proteomics strategy as a powerful tool for the functional study of miRNA.</p></div

    Customer opinions mining through social media: Insights from sustainability fraud crisis - Volkswagen emissions scandal

    Get PDF
    Social media has emerged as a vital tool to advance two-way communication between companies and customers. This paper uses 29,764 tweets to investigate a sustainability fraud crisis, the Volkswagen emissions scandal. We provide a Tweet Analytic Framework comprising three approaches: cluster analysis, sentiment analysis, and time series analysis. This paper explores public opinions regarding the Volkswagen emissions scandal in two stages and reveals the typical crisis development trend, the strong condemnation and negative sentiment, and significant public concerns. This paper can yield important insights for understanding how customers’ opinions change, thereby improving the effectiveness of managing sustainability fraud crises
    corecore