219 research outputs found

    Effect of hydro-climate variation on biofilm dynamics and its impact in intertidal environments

    Get PDF
    Shallow tidal environments are very productive ecosystems but are sensitive to environmental changes and sea level rise. Bio-morphodynamic control of these environments is therefore a crucial consideration; however, the effect of small-scale biological activity on large-scale cohesive sediment dynamics like tidal basins and estuaries is still largely unquantified. This study advances our understanding by assessing the influence of biotic and abiotic factors on biologically cohesive sediment transport and morphology. An idealised benthic biofilm model is incorporated in a 1D morphodynamic model of tide-dominated channels. This study investigates the effect of a range of environmental and biological conditions on biofilm growth and their feedback on the morphological evolution of the entire intertidal channel. By carrying out a sensitivity analysis of the bio-morphodynamic model, parameters like (i) hydrodynamic disturbances, (ii) seasonality, (iii) biofilm growth rate, (iv) temperature variation and (v) bio-cohesivity of the sediment are systematically changed. Results reveal that key parameters such as growth rate and temperature strongly influence the development of biofilm and are key determinants of equilibrium biofilm configuration and development under a range of disturbance periodicities and intensities. Long-term simulations of intertidal channel development demonstrate that the hydrodynamic disturbances induced by tides play a key role in shaping the morphology of the bed and that the presence of surface biofilm increases the time to reach morphological equilibrium. In locations characterised by low hydrodynamic forces, the biofilm grows and stabilises the bed, inhibiting the transport of coarse sediment (medium and fine sand). These findings suggest biofilm presence in channel beds results in intertidal channels that have significantly different characteristics in terms of morphology and stratigraphy compared abiotic sediments. It is concluded that inclusion of bio-cohesion in morphodynamic models is essential to predict estuary development and mitigate coastal erosion.</p

    AVERT2(a very early rehabilitation trial, a very effective reproductive trigger): retrospective observational analysis of the number of babies born to trial staff

    Get PDF
    Objective: To report the number of participants needed to recruit per baby born to trial staff during AVERT, a large international trial on acute stroke, and to describe trial management consequences. Design: Retrospective observational analysis. Setting: 56 acute stroke hospitals in eight countries. Participants: 1074 trial physiotherapists, nurses, and other clinicians. Outcome measures: Number of babies born during trial recruitment per trial participant recruited. Results: With 198 site recruitment years and 2104 patients recruited during AVERT, 120 babies were born to trial staff. Births led to an estimated 10% loss in time to achieve recruitment. Parental leave was linked to six trial site closures. The number of participants needed to recruit per baby born was 17.5 (95% confidence interval 14.7 to 21.0); additional trial costs associated with each birth were estimated at 5736 Australian dollars on average. Conclusion: The staff absences registered in AVERT owing to parental leave led to delayed trial recruitment and increased costs, and should be considered by trial investigators when planning research and estimating budgets. However, the celebration of new life became a highlight of the annual AVERT collaborators’ meetings and helped maintain a cohesive collaborative group

    Time-resolved Neutron-gamma-ray Data Acquisition for in Situ Subsurface Planetary Geochemistry

    Get PDF
    The current gamma-ray/neutron instrumentation development effort at NASA Goddard Space Flight Center aims to extend the use of active pulsed neutron interrogation techniques to probe the subsurface elemental composition of planetary bodies in situ. Previous NASA planetary science missions, that used neutron and/or gamma-ray spectroscopy instruments, have relied on neutrons produced from galactic cosmic rays. One of the distinguishing features of this effort is the inclusion of a high intensity 14.1 MeV pulsed neutron generator synchronized with a custom data acquisition system to time each event relative to the pulse. With usually only one opportunity to collect data, it is difficult to set a priori time-gating windows to obtain the best possible results. Acquiring time-tagged, event-by-event data from nuclear induced reactions provides raw data sets containing channel/energy, and event time for each gamma ray or neutron detected. The resulting data set can be plotted as a function of time or energy using optimized analysis windows after the data are acquired. Time windows can now be chosen to produce energy spectra that yield the most statistically significant and accurate elemental composition results that can be derived from the complete data set. The advantages of post-processing gamma-ray time-tagged event-by-event data in experimental tests using our prototype instrument will be demonstrated

    Current- and Wave-Generated Bedforms on Mixed Sand–Clay Intertidal Flats:A New Bedform Phase Diagram and Implications for Bed Roughness and Preservation Potential

    Get PDF
    The effect of bedforms on frictional roughness felt by the overlying flow is crucial to the regional modelling of estuaries and coastal seas. Bedforms are also a key marker of palaeoenvironments. Experiments have shown that even modest biotic and abiotic cohesion in sand inhibits bedform formation, modifies bedform size, and slows bedform development, but this has rarely been tested in nature. The present study used a comprehensive dataset recorded over a complete spring–neap cycle on an intertidal flat to investigate bedform dynamics controlled by a wide range of wave and current conditions, including the effects of wave–current angle and bed cohesion. A detailed picture of different bedform types and their relationship to the flow, be they equilibrium, non-equilibrium, or relict, was produced, and captured in a phase diagram that integrates wave-dominated, current-dominated, and combined wave–current bedforms. This bedform phase diagram incorporates a substantially wider range of flow conditions than previous phase diagrams, including bedforms related to near-orthogonal wave–current angles, such as ladderback ripples. Comparison with laboratory-derived bedform phase diagrams indicates that washed-out ripples, lunate interference ripples and upper-stage plane beds replace the subaqueous dune field; such bedform distributions may be a key characteristic of intertidal flats. The field data also provide a means of predicting the dimensions of these bedforms, which can be transferred to other areas and grain sizes. We show that an equation for the prediction of equilibrium bedform size is sufficient to predict the roughness, even though the bedforms are highly variable in character and only in equilibrium with the flow for approximately half the time. Whilst the effect of cohesive clay is limited under more active spring conditions, clay does play a role in reducing the bedform dimensions under more quiescent neap conditions. We also investigated which combinations of waves, currents, and bed clay contents in the intertidal zone have the highest potential for bedform preservation in the geological record. This shows that combined wave–current bedforms have the lowest preservation potential and equilibrium current ripples have the highest preservation potential, even in the presence of moderate and storm waves. Hence, the absence of wave ripples and combined-flow bedforms and their primary stratification in sedimentary successions cannot be taken as evidence that waves were absent at the time of deposition

    Design considerations in a clinical trial of a cognitive behavioural intervention for the management of low back pain in primary care : Back Skills Training Trial

    Get PDF
    Background Low back pain (LBP) is a major public health problem. Risk factors for the development and persistence of LBP include physical and psychological factors. However, most research activity has focused on physical solutions including manipulation, exercise training and activity promotion. Methods/Design This randomised controlled trial will establish the clinical and cost-effectiveness of a group programme, based on cognitive behavioural principles, for the management of sub-acute and chronic LBP in primary care. Our primary outcomes are disease specific measures of pain and function. Secondary outcomes include back beliefs, generic health related quality of life and resource use. All outcomes are measured over 12 months. Participants randomised to the intervention arm are invited to attend up to six weekly sessions each of 90 minutes; each group has 6–8 participants. A parallel qualitative study will aid the evaluation of the intervention. Discussion In this paper we describe the rationale and design of a randomised evaluation of a group based cognitive behavioural intervention for low back pain

    The role of biophysical cohesion on subaqueous bed form size

    Get PDF
    Biologically active, fine-grained sediment forms abundant sedimentary deposits on Earth's surface, and mixed mud-sand dominates many coasts, deltas, and estuaries. Our predictions of sediment transport and bed roughness in these environments presently rely on empirically based bed form predictors that are based exclusively on biologically inactive cohesionless silt, sand, and gravel. This approach underpins many paleoenvironmental reconstructions of sedimentary successions, which rely on analysis of cross-stratification and bounding surfaces produced by migrating bed forms. Here we present controlled laboratory experiments that identify and quantify the influence of physical and biological cohesion on equilibrium bed form morphology. The results show the profound influence of biological cohesion on bed form size and identify how cohesive bonding mechanisms in different sediment mixtures govern the relationships. The findings highlight that existing bed form predictors require reformulation for combined biophysical cohesive effects in order to improve morphodynamic model predictions and to enhance the interpretations of these environments in the geological record

    Mechanism of Action of Two Flavone Isomers Targeting Cancer Cells with Varying Cell Differentiation Status

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Apoptosis can be triggered in two different ways, through the intrinsic or the extrinsic pathway. The intrinsic pathway is mediated by the mitochondria via the release of cytochrome C while the extrinsic pathway is prompted by death receptor signals and bypasses the mitochondria. These two pathways are closely related to cell proliferation and survival signaling cascades, which thereby constitute possible targets for cancer therapy. In previous studies we introduced two plant derived isomeric flavonoids, flavone A and flavone B which induce apoptosis in highly tumorigenic cancer cells of the breast, colon, pancreas, and the prostate. Flavone A displayed potent cytotoxic activity against more differentiated carcinomas of the colon (CaCo-2) and the pancreas (Panc28), whereas flavone B cytotoxic action is observed on poorly differentiated carcinomas of the colon (HCT 116) and pancreas (MIA PaCa). Apoptosis is induced by flavone A in better differentiated colon cancer CaCo-2 and pancreatic cancer Panc 28 cells via the intrinsic pathway by the inhibition of the activated forms of extracellular signal-regulated kinase (ERK) and pS6, and subsequent loss of phosphorylation of Bcl-2 associated death promoter (BAD) protein, while apoptosis is triggered by flavone B in poorly differentiated colon cancer HCT 116 and MIA PaCa pancreatic cancer cells through the extrinsic pathway with the concomitant upregulation of the phosphorylated forms of ERK and c-JUN at serine 73. These changes in protein levels ultimately lead to activation of apoptosis, without the involvement of AKT
    • …
    corecore