17 research outputs found

    Gene Transfer of Pro-opiomelanocortin Prohormone Suppressed the Growth and Metastasis of Melanoma: Involvement of ␣-Melanocyte-Stimulating Hormone-Mediated Inhibition of the Nuclear Factor B/Cyclooxygenase-2 Pathway

    Get PDF
    ABSTRACT Pro-opiomelanocortin (POMC) is a prohormone of various neuropeptides, including corticotropin, ␣-melanocyte-stimulating hormone (␣-MSH), and ␤-endorphin (␤-EP) . POMC neuropeptides are potent inflammation inhibitors and immunosuppressants and may exert opposite influences during tumorigenesis. However, the role of POMC expression in carcinogenesis remains elusive. We evaluated the antineoplastic potential of POMC gene delivery in a syngenic B16-F10 melanoma model. Adenovirus-mediated POMC gene delivery in B16-F10 cells increased the release of POMC neuropeptides in cultured media, which differentially regulated the secretion of pro-and anti-inflammatory cytokines in lymphocytes. POMC gene transfer significantly reduced the anchorage-independent growth of melanoma cells. Moreover, pre-or post-treatment with POMC gene delivery effectively retarded the melanoma growth in mice. Intravenous injection of POMC-transduced B16-F10 cells resulted in reduced foci formation in lung by 60 to 70% of control. The reduced metastasis of POMC-transduced B16-F10 cells could be attributed to their attenuated migratory and adhesive capabilities. POMC gene delivery reduced the cyclooxygenase-2 (COX-2) expression and prostaglandin (PG) E 2 synthesis in melanoma cells and tumor tissues. In addition, application of NS-398, a selective COX-2 inhibitor, mimicked the antineoplastic functions of POMC gene transfer in melanoma. The POMC-mediated COX-2 down-regulation was correlated with its inhibition of nuclear factor B (NFB) activities. Exogenous supply of ␣-MSH inhibited NFB activities, whereas application of the ␣-MSH antagonist growth hormone-releasing peptide-6 (GHRP-6) abolished the POMC-induced inhibition of NFB activities and melanoma growth in mice. In summary, POMC gene delivery suppresses melanoma via ␣-MSH-induced inhibition of NFB/COX-2 pathway, thereby constituting a novel therapy for melanoma. POMC is a multifunctional polycistronic gene located on human chromosome 2p23.3. POMC is a 31 kDa prohormone that is processed into various neuropeptides, including corticotropin, melanotropins (␣-, ␤-, and ␥-MSH), lipotropins, and ␤-endorphin (␤-EP

    Novel Polymerization of Dental Composites Using Near-Infrared-Induced Internal Upconversion Blue Luminescence

    No full text
    Blue light (BL) curing on dental resin composites results in gradient polymerization. By incorporating upconversion phosphors (UP) in resin composites, near-infrared (NIR) irradiation may activate internal blue emission and a polymerization reaction. This study was aimed to evaluate the competency of the NIR-to-BL upconversion luminance in polymerizing dental composites and to assess the appropriate UP content and curing protocol. NaYF4 (Yb3+/Tm3+ co-doped) powder exhibiting 476-nm blue emission under 980-nm NIR was adapted and ball-milled for 4–8 h to obtain different particles. The bare particles were assessed for their emission intensities, and also added into a base composite Z100 (3M EPSE) to evaluate their ability in enhancing polymerization under NIR irradiation. Experimental composites were prepared by dispensing the selected powder and Z100 at different ratios (0, 5, 10 wt% UP). These composites were irradiated under different protocols (BL, NIR, or their combinations), and the microhardness at the irradiated surface and different depths were determined. The results showed that unground UP (d50 = 1.9 μm) exhibited the highest luminescence, while the incorporation of 0.4-μm particles obtained the highest microhardness. The combined 20-s BL and 20–120-s NIR significantly increased the microhardness on the surface and internal depths compared to BL correspondents. The 5% UP effectively enhanced the microhardness under 80-s NIR irradiation but was surpassed by 10% UP with longer NIR irradiation. The combined BL-NIR curing could be an effective approach to polymerize dental composites, while the intensity of upconversion luminescence was related to specific UP particle size and content. Incorporation of 5–10% UP facilitates NIR upconversion polymerization on dental composites

    Haloperidol Instigates Endometrial Carcinogenesis and Cancer Progression by the NF-κB/CSF-1 Signaling Cascade

    No full text
    Haloperidol is a routine drug for schizophrenia and palliative care of cancer; it also has antitumor effects in several types of cancer. However, the role of haloperidol in endometrial cancer (EC) development is still unclear. Here, we show that chronic haloperidol treatment in clinically relevant doses induced endometrial hyperplasia in normal mice and promoted tumor growth and malignancy in mice with orthotopic EC. The pharmacokinetic study indicated that haloperidol highly accumulated in the uterus of mice. In vitro studies revealed that haloperidol stimulated the cellular transformation of human endometrial epithelial cells (HECCs) and promoted the proliferation, migration, and invasion of human endometrial carcinoma cells (HECCs) by activating nuclear factor kappa B (NF-κB) and its downstream signaling target, colony-stimulating factor 1 (CSF-1). Gain of function of CSF-1 promotes the cellular transformation of HEECs and the malignant progression of HECCs. Moreover, blockade of CSF-1 inhibited haloperidol-promoted EC progression in vitro and in vivo. A population-based cohort study of EC patients further demonstrated that the use of haloperidol was associated with increased EC-specific mortality. Collectively, these findings indicate that clinical use of haloperidol could potentially be harmful to female patients with EC

    Antimicrobial Non-Susceptibility of Escherichia coli from Outpatients and Patients Visiting Emergency Rooms in Taiwan.

    No full text
    Longitudinal nationwide surveillance data on antimicrobial non-susceptibility and prevalence of extended-spectrum β-lactamases (ESBLs) as well as AmpC β-lactamases producers among Escherichia coli from different sources in the community settings are limited. Such data may impact treatment practice. The present study investigated E. coli from outpatients and patients visiting emergency rooms collected by the Taiwan Surveillance of Antimicrobial Resistance (TSAR) program. A total of 3481 E. coli isolates were studied, including 2153 (61.9%) from urine and 1125 (32.3%) from blood samples. These isolates were collected biennially between 2002 and 2012 from a total of 28 hospitals located in different geographic regions of Taiwan. Minimum inhibitory concentrations (MIC) were determined using methods recommended by the Clinical Laboratory Standards Institute (CLSI). The prevalence and factors associated with the presence of ESBL and AmpC β-lactamase-producers were determined. Significant increases in non-susceptibility to most β-lactams and ciprofloxacin occurred during the study period. By 2012, non-susceptibility to cefotaxime and ciprofloxacin reached 21.1% and 26.9%, respectively. The prevalence of ESBL- and AmpC- producers also increased from 4.0% and 5.3%, respectively, in 2002-2004, to 10.7% for both in 2010-2012 (P < 0.001). The predominant ESBL and AmpC β-lactamase genes were CTX-M and CMY-types, respectively. Non-susceptibility of urine isolates to nitrofurantoin remained at around 8% and to fosfomycin was low (0.7%) but to cefazolin (based on the 2014 CLSI urine criteria) increased from 11.5% in 2002-2004 to 23.9% in 2010-2012 (P <0.001). Non-susceptibility of isolates from different specimen types was generally similar, but isolates from elderly patients were significantly more resistant to most antimicrobial agents and associated with the presence of ESBL- and AmpC- β-lactamases. An additional concern is that decreased ciprofloxacin susceptibility (MIC 0.12-1 mg/L) was as high as 25% in isolates from all age groups, including those from pediatric patients. Our data indicated that there is a need to re-evaluate appropriate treatment selection for community-acquired infections in Taiwan. Identification of community reservoirs of multidrug-resistant E. coli is also warranted
    corecore