123 research outputs found

    Modifying genetic epilepsies - Results from studies on tuberous sclerosis complex

    Get PDF
    Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disorder affecting approximately 1 in 6,000 in general population and represents one of the most common genetic causes of epilepsy. Epilepsy affects 90% of the patients and appears in the first 2 years of life in the majority of them. Early onset of epilepsy in the first year of life is associated with high risk of cognitive decline and neuropsychiatric problems including autism. Recently TSC has been recognized as a model of genetic epilepsies. TSC is a genetic condition with known dysregulated mTOR pathway and is increasingly viewed as a model for human epileptogenesis. Moreover, TSC is characterized by a hyperactivation of mTOR (mammalian target of rapamycin) pathway, and mTOR activation was showed to be implicated in epileptogenesis in many animal models and human epilepsies. Recently published studies documented positive effect of preventive or disease modifying treatment of epilepsy in infants with high risk of epilepsy with significantly lower incidence of epilepsy and better cognitive outcome. Further studies on preventive treatment of epilepsy in other genetic epilepsies of early childhood are considered. This article is part of the special issue entitled \u27New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy\u27

    Interaction of Bupropion with Muscle-Type Nicotinic Acetylcholine Receptors in Different Conformational States

    Get PDF
    To characterize the binding sites and the mechanisms of inhibition of bupropion on muscle-type nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The results established that bupropion: (a) inhibits epibatidine-induced Ca2+ influx in embryonic muscle AChRs, (b) inhibits adult muscle AChR macroscopic currents in the resting/activatable state with ~100-fold higher potency compared to that in the open state, (c) increases desensitization rate of adult muscle AChRs from the open state and impairs channel opening from the resting state, (d) inhibits [3H]TCP and [3H]imipramine binding to the desensitized/carbamylcholine-bound Torpedo AChR with higher affinity compared to the resting/α-bungarotoxin-bound AChR, (e) binds to the Torpedo AChR in either state mainly by an entropy–driven process, and (f) interacts with a binding domain located between the serine (position 6’) and valine (position 13’) rings, by a network of van der Waals, hydrogen bond, and polar interactions. Collectively our data indicate that bupropion first binds to the resting AChR, decreasing the probability of ion channel opening. The remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process. Bupropion interacts with a luminal binding domain shared with PCP that is located between the serine and valine rings, and this interaction is mediated mainly by an entropy-driven process.Fil: Arias, Hugo Rubén. Midwestern University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gumilar, Fernanda Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Rosenberg, Avraham. National Institutes of Health; Estados UnidosFil: Targowska Duda, Katarzyna M.. Medical University of Lublin; PoloniaFil: Feuerbach, Dominik. Novartis Institutes for Biomedical Research; SuizaFil: Jozwiak, Krzysztof. Medical University of Lublin; PoloniaFil: Moaddel, Ruin. National Institutes of Health; Estados UnidosFil: Wainer, Irving W.. National Institutes of Health; Estados UnidosFil: Bouzat, Cecilia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentin

    Poly-saturated dolichols from filamentous fungi modulate activity of dolichol-dependent glycosyltransferase and physical properties of membranes

    Get PDF
    Mono-saturated polyprenols (dolichols) have been found in almost all Eukaryotic cells, however, dolichols containing additional saturated bonds at the ω-end, have been identified in A. fumigatus and A. niger. Here, we confirm, using an LC-ESI-QTOF-MS analysis that poly-saturated dolichols are abundant in other filamentous fungi, Trichoderma reesei, A. nidulans and Neurospora crassa, while the yeast Saccharomyces cerevisiae only contains the typical mono-saturated dolichols. We also show, using differential scanning calorimetry (DSC) and fluorescence anisotropy of 1,6-diphenyl-l,3,5-hexatriene (DPH) that the structure of dolichols modulates the properties of membranes and affects the functioning of dolichyl diphosphate mannose synthase (DPMS). The activity of this enzyme from T. reesei and S. cerevisiae was strongly affected by the structure of dolichols. Also the structure of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) model membranes was more strongly disturbed by the poly-saturated dolichols from Trichoderma than by the mono-saturated dolichols from yeast. By comparing the lipidome of filamentous fungi with that from S. cerevisiae we revealed significant differences in the PC/PE ratio and fatty acids composition. Filamentous fungi differ from S. cerevisiae in the lipid composition of their membranes and the structure of dolichols. The structure of dolichols profoundly affects the functioning of dolichol-dependent enzyme, DPMS

    Adjuvant capecitabine-containing chemotherapy benefit and homologous recombination deficiency in early-stage triple-negative breast cancer patients

    Get PDF
    Background The addition of adjuvant capecitabine to standard chemotherapy of early-stage triple-negative breast cancer (TNBC) patients has improved survival in a few randomised trials and in meta-analyses. However, many patients did not benefit. We evaluated the BRCA1-like DNA copy number signature, indicative of homologous recombination deficiency, as a predictive biomarker for capecitabine benefit in the TNBC subgroup of the FinXX trial. Methods Early-stage TNBC patients were randomised between adjuvant capecitabine-containing (TX + CEX: capecitabine-docetaxel, followed by cyclophosphamide-epirubicin-capecitabine) and conventional chemotherapy (T + CEF: docetaxel, followed by cyclophosphamide-epirubicin-fluorouracil). Tumour BRCA1-like status was determined on low-coverage, whole genome next-generation sequencing data using an established DNA comparative genomic hybridisation algorithm. Results For 129/202 (63.9%) patients the BRCA1-like status could be determined, mostly due to lack of tissue. During a median follow-up of 10.7 years, 35 recurrences and 32 deaths occurred. Addition of capecitabine appears to improve recurrence-free survival more among 61 (47.3%) patients with non-BRCA1-like tumours (HR 0.23, 95% CI 0.08-0.70) compared to 68 (52.7%) patients with BRCA1-like tumours (HR 0.66, 95% CI 0.24-1.81) (P-interaction = 0.17). Conclusion Based on our data, patients with non-BRCA1-like TNBC appear to benefit from the addition of capecitabine to adjuvant chemotherapy. Patients with BRCA1-like TNBC may also benefit. Additional research is needed to define the subgroup within BRCA1-like TNBC patients who may not benefit from adjuvant capecitabine.Peer reviewe

    Molecular EPISTOP, a comprehensive multi-omic analysis of blood from Tuberous Sclerosis Complex infants age birth to two years

    Get PDF
    We present a comprehensive multi-omic analysis of the EPISTOP prospective clinical trial of early intervention with vigabatrin for pre-symptomatic epilepsy treatment in Tuberous Sclerosis Complex (TSC), in which 93 infants with TSC were followed from birth to age 2 years, seeking biomarkers of epilepsy development. Vigabatrin had profound effects on many metabolites, increasing serum deoxycytidine monophosphate (dCMP) levels 52-fold. Most serum proteins and metabolites, and blood RNA species showed significant change with age. Thirty-nine proteins, metabolites, and genes showed significant differences between age-matched control and TSC infants. Six also showed a progressive difference in expression between control, TSC without epilepsy, and TSC with epilepsy groups. A multivariate approach using enrollment samples identified multiple 3-variable predictors of epilepsy, with the best having a positive predictive value of 0.987. This rich dataset will enable further discovery and analysis of developmental effects, and associations with seizure development in TSC.</p

    Distinct DNA Methylation Patterns of Subependymal Giant Cell Astrocytomas in Tuberous Sclerosis Complex

    Get PDF
    Tuberous sclerosis complex (TSC) is a monogenic disorder caused by mutations in either the TSC1 or TSC2 gene, two key regulators of the mechanistic target of the rapamycin complex pathway. Phenotypically, this leads to growth and formation of hamartomas in several organs, including the brain. Subependymal giant cell astrocytomas (SEGAs) are low-grade brain tumors commonly associated with TSC. Recently, gene expression studies provided evidence that the immune system, the MAPK pathway and extracellular matrix organization play an important role in SEGA development. However, the precise mechanisms behind the gene expression changes in SEGA are still largely unknown, providing a potential role for DNA methylation. We investigated the methylation profile of SEGAs using the Illumina Infinium HumanMethylation450 BeadChip (SEGAs n = 42, periventricular control n = 8). The SEGA methylation profile was enriched for the adaptive immune system, T cell activation, leukocyte mediated immunity, extracellular structure organization and the ERK1 & ERK2 cascade. More interestingly, we identified two subgroups in the SEGA methylation data and show that the differentially expressed genes between the two subgroups are related to the MAPK cascade and adaptive immune response. Overall, this study shows that the immune system, the MAPK pathway and extracellular matrix organization are also affected on DNA methylation level, suggesting that therapeutic intervention on DNA level could be useful for these specific pathways in SEGA. Moreover, we identified two subgroups in SEGA that seem to be driven by changes in the adaptive immune response and MAPK pathway and could potentially hold predictive information on target treatment response

    The coding and non-coding transcriptional landscape of subependymal giant cell astrocytomas

    Get PDF
    Tuberous sclerosis complex (TSC) is an autosomal dominantly inherited neurocutaneous disorder caused by inactivating mutations in TSC1 or TSC2, key regulators of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. In the CNS, TSC is characterized by cortical tubers, subependymal nodules and subependymal giant cell astrocytomas (SEGAs). SEGAs may lead to impaired circulation of CSF resulting in hydrocephalus and raised intracranial pressure in patients with TSC. Currently, surgical resection and mTORC1 inhibitors are the recommended treatment options for patients with SEGA. In the present study, high-throughput RNA-sequencing (SEGAs n = 19, periventricular control n = 8) was used in combination with computational approaches to unravel the complexity of SEGA development. We identified 9400 mRNAs and 94 microRNAs differentially expressed in SEGAs compared to control tissue. The SEGA transcriptome profile was enriched for the mitogen-activated protein kinase (MAPK) pathway, a major regulator of cell proliferation and survival. Analysis at the protein level confirmed that extracellular signal-regulated kinase (ERK) is activated in SEGAs. Subsequently, the inhibition of ERK independently of mTORC1 blockade decreased efficiently the proliferation of primary patient-derived SEGA cultures. Furthermore, we found that LAMTOR1, LAMTOR2, LAMTOR3, LAMTOR4 and LAMTOR5 were overexpressed at both gene and protein levels in SEGA compared to control tissue. Taken together LAMTOR1-5 can form a complex, known as the 'Ragulator' complex, which is known to activate both mTORC1 and MAPK/ERK pathways. Overall, this study shows that the MAPK/ERK pathway could be used as a target for treatment independent of, or in combination with mTORC1 inhibitors for TSC patients. Moreover, our study provides initial evidence of a possible link between the constitutive activated mTORC1 pathway and a secondary driver pathway of tumour growth

    Changes in disease burden in Poland between 1990-2017 in comparison with other Central European countries : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    BACKGROUND:Systematic collection of mortality/morbidity data over time is crucial for monitoring trends in population health, developing health policies, assessing the impact of health programs. In Poland, a comprehensive analysis describing trends in disease burden for major conditions has never been published. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides data on the burden of over 300 diseases in 195 countries since 1990. We used the GBD database to undertake an assessment of disease burden in Poland, evaluate changes in population health between 1990-2017, and compare Poland with other Central European (CE) countries. METHODS:The results of GBD 2017 for 1990 and 2017 for Poland and CE were used to assess rates and trends in years of life lost (YLLs), years lived with disability (YLDs), disability-adjusted life years (DALYs). Data came from cause-of-death registration systems, population health surveys, disease registries, hospitalization databases, and the scientific literature. Analytical approaches have been used to adjust for missing data, errors in cause-of-death certification, and differences in data collection methodology. Main estimation strategies were ensemble modelling for mortality and Bayesian meta-regression for disability. RESULTS:Between 1990-2017, age-standardized YLL rates for all causes declined in Poland by 46.0% (95% UI: 43.7-48.2), YLD rates declined by 4.0% (4.2-4.9), DALY rates by 31.7% (29.2-34.4). For both YLLs and YLDs, greater relative declines were observed for females. There was a large decrease in communicable, maternal, neonatal, and nutritional disease DALYs (48.2%; 46.3-50.4). DALYs due to non-communicable diseases (NCDs) decreased slightly (2.0%; 0.1-4.6). In 2017, Poland performed better than CE as a whole (ranked fourth for YLLs, sixth for YLDs, and fifth for DALYs) and achieved greater reductions in YLLs and DALYs than most CE countries. In 2017 and 1990, the leading cause of YLLs and DALYs in Poland and CE was ischaemic heart disease (IHD), and the leading cause of YLDs was low back pain. In 2017, the top 20 causes of YLLs and YLDs in Poland and CE were the same, although in different order. In Poland, age-standardized DALYs from neonatal causes, other cardiovascular and circulatory diseases, and road injuries declined substantially between 1990-2017, while alcohol use disorders and chronic liver diseases increased. The highest observed-to-expected ratios were seen for alcohol use disorders for YLLs, neonatal sepsis for YLDs, and falls for DALYs (3.21, 2.65, and 2.03, respectively). CONCLUSIONS:There was relatively little geographical variation in premature death and disability in CE in 2017, although some between-country differences existed. Health in Poland has been improving since 1990; in 2017 Poland outperformed CE as a whole for YLLs, YLDs, and DALYs. While the health gap between Poland and Western Europe has diminished, it remains substantial. The shift to NCDs and chronic disability, together with marked between-gender health inequalities, poses a challenge for the Polish health-care system. IHD is still the leading cause of disease burden in Poland, but DALYs from IHD are declining. To further reduce disease burden, an integrated response focused on NCDs and population groups with disproportionally high burden is needed
    • …
    corecore