9,057 research outputs found

    Possible origin of 60-K plateau in the YBa2Cu3O(6+y) phase diagram

    Full text link
    We study a model of YBa2Cu3O(6+y) to investigate the influence of oxygen ordering and doping imbalance on the critical temperature Tc(y) and to elucidate a possible origin of well-known feature of YBCO phase diagram: the 60-K plateau. Focusing on "phase only" description of the high-temperature superconducting system in terms of collective variables we utilize a three-dimensional semi microscopic XY model with two-component vectors that involve phase variables and adjustable parameters representing microscopic phase stiffnesses. The model captures characteristic energy scales present in YBCO and allows for strong anisotropy within basal planes to simulate oxygen ordering. Applying spherical closure relation we have solved the phase XY model with the help of transfer matrix method and calculated Tc for chosen system parameters. Furthermore, we investigate the influence of oxygen ordering and doping imbalance on the shape of YBCO phase diagram. We find it unlikely that oxygen ordering alone can be responsible for the existence of 60-K plateau. Relying on experimental data unveiling that oxygen doping of YBCO may introduce significant charge imbalance between CuO2 planes and other sites, we show that simultaneously the former are underdoped, while the latter -- strongly overdoped almost in the whole region of oxygen doping in which YBCO is superconducting. As a result, while oxygen content is increased, this provides two counter acting factors, which possibly lead to rise of 60K plateau. Additionally, our result can provide an important contribution to understanding of experimental data supporting existence of multicomponent superconductivity in YBCO.Comment: 9 pages, 8 figures, submitted to PRB, see http://prb.aps.or

    Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 1: Study overview

    Get PDF
    The ability of current methodologies to accurately predict the aerodynamic characteristics identified as uncertainties was evaluated for two aircraft configurations. The two wind tunnel models studied horizontal altitude takeoff and landing V/STOL fighter aircraft derivatives

    Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 3: Effects of configuration variations from baseline

    Get PDF
    The aerodynamic characteristics of the components of the baseline E205 configuration is presented. Geometric variations from the baseline E205 configuration are also given including a matrix of conrad longitudinal locations and strake shapes

    The phase shift of an ultrasonic pulse at an oil layer and determination of film thickness

    Get PDF
    An ultrasonic pulse incident on a lubricating oil film in a machine element will be partially reflected and partially transmitted. The proportion of the wave amplitude reflected, termed the reflection coefficient, depends on the film thickness and the acoustic properties of the oil. When the appropriate ultrasonic frequency is used, the magnitude of the reflection coefficient can be used to determine the oil film thickness. However, the reflected wave has both a real component and an imaginary component, and both the amplitude and the phase are functions of the film thickness. The phase of the reflected wave will be shifted from that of the incident wave when it is reflected. In the present study, this phase shift is explored as the film changes and is evaluated as an alternative means to measure oil film thickness. A quas i-static theoretical model of the reflection response from an oil film has been, developed. This model relates the phase shift to the wave frequency and the film properties. Measurements of reflection coefficient from a static model oil film and also from a rotating journal bearing have been recorded. These have been used to determine the oil film thickness using both amplitude and phase shift methods. In both cases, the results agree closely with independent assessments of the oil film thickness. The model of ultrasonic reflection is further extended to incorporate mass and damping terms. Experiments show that both the mass and the internal damping of the oil films tested in this work have a negligible effect on ultrasonic reflection. A potentially v ery useful application for the simultaneous measurement of reflection coefficient amplitude and phase is that the data can be used to negate the need for a reference. The theoretical relationship between phase and amplitude is fitted to the data. An extrapolation is performed to determine the values of amplitude and phase for an infinitely thick layer. This is equivalent to the reference signal determined by measuring the reflection coefficient directly, but importantly does not require the materials to be separated. This provides a simple and effective means of continuously calibrating the film measurement approach

    Rapid generation of angular momentum in bounded magnetized plasma

    Full text link
    Direct numerical simulations of two-dimensional decaying MHD turbulence in bounded domains show the rapid generation of angular momentum in nonaxisymmetric geometries. It is found that magnetic fluctuations enhance this mechanism. On a larger time scale, the generation of a magnetic angular momentum, or angular field, is observed. For axisymmetric geometries, the generation of angular momentum is absent; nevertheless, a weak magnetic field can be observed. The derived evolution equations for both the angular momentum and angular field yield possible explanations for the observed behavior

    A New Source for Electroweak Baryogenesis in the MSSM

    Get PDF
    One of the most experimentally testable explanations for the origin of the baryon asymmetry of the universe is that it was created during the electroweak phase transition, in the minimal supersymmetric standard model. Previous efforts have focused on the current for the difference of the two Higgsino fields, H1H2H_1-H_2, as the source of biasing sphalerons to create the baryon asymmetry. We point out that the current for the orthogonal linear combination, H1+H2H_1+H_2, is larger by several orders of magnitude. Although this increases the efficiency of electroweak baryogenesis, we nevertheless find that large CP-violating angles 0.15\ge 0.15 are required to get a large enough baryon asymmetry.Comment: 4 pages, 2 figures; numerical error corrected, which implies that large CP violation is needed to get observed baryon asymmetry. We improved solution of diffusion equations, and computed more accurate values for diffusion coefficient and damping rate

    Supersymmetric Extension of the Quantum Spherical Model

    Get PDF
    In this work, we present a supersymmetric extension of the quantum spherical model, both in components and also in the superspace formalisms. We find the solution for short/long range interactions through the imaginary time formalism path integral approach. The existence of critical points (classical and quantum) is analyzed and the corresponding critical dimensions are determined.Comment: 21 pages, fixed notation to match published versio

    A combinatorial approach to knot recognition

    Full text link
    This is a report on our ongoing research on a combinatorial approach to knot recognition, using coloring of knots by certain algebraic objects called quandles. The aim of the paper is to summarize the mathematical theory of knot coloring in a compact, accessible manner, and to show how to use it for computational purposes. In particular, we address how to determine colorability of a knot, and propose to use SAT solving to search for colorings. The computational complexity of the problem, both in theory and in our implementation, is discussed. In the last part, we explain how coloring can be utilized in knot recognition

    Packing and Hausdorff measures of stable trees

    Get PDF
    In this paper we discuss Hausdorff and packing measures of random continuous trees called stable trees. Stable trees form a specific class of L\'evy trees (introduced by Le Gall and Le Jan in 1998) that contains Aldous's continuum random tree (1991) which corresponds to the Brownian case. We provide results for the whole stable trees and for their level sets that are the sets of points situated at a given distance from the root. We first show that there is no exact packing measure for levels sets. We also prove that non-Brownian stable trees and their level sets have no exact Hausdorff measure with regularly varying gauge function, which continues previous results from a joint work with J-F Le Gall (2006).Comment: 40 page

    A statistical mechanical description of metastable states and hysteresis in the 3D soft-spin random-field model at T=0

    Full text link
    We present a formalism for computing the complexity of metastable states and the zero-temperature magnetic hysteresis loop in the soft-spin random-field model in finite dimensions. The complexity is obtained as the Legendre transform of the free-energy associated to a certain action in replica space and the hysteresis loop above the critical disorder is defined as the curve in the field-magnetization plane where the complexity vanishes; the nonequilibrium magnetization is therefore obtained without having to follow the dynamical evolution. We use approximations borrowed from condensed-matter theory and based on assumptions on the structure of the direct correlation functions (or proper vertices), such as a local approximation for the self-energies, to calculate the hysteresis loop in three dimensions, the correlation functions along the loop, and the second moment of the avalanche-size distribution.Comment: 28 pages, 12 figure
    corecore