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Packing and Hausdorff measures of stable

trees.

Thomas Duquesne ∗

January 28, 2010

Abstract

In this paper we discuss Hausdorff and packing measures of random continuous
trees called stable trees. Stable trees form a specific class of Lévy trees (introduced
by Le Gall and Le Jan in [28]) that contains Aldous’s continuum random tree which
corresponds to the Brownian case. We provide results for the whole stable trees and
for their level sets that are the sets of points situated at a given distance from the
root. We first show that there is no exact packing measure for levels sets. We also
prove that non-Brownian stable trees and their level sets have no exact Hausdorff
measure with regularly varying gauge function, which continues previous results from
[13].
AMS 2000 subject classifications: Primary 60G57, 60J80. Secondary 28A78.
Keywords: Lévy trees, stable trees, mass measure, local time measure, Hausdorff

measure, packing measure.

1 Introduction

Stable trees are particular instances of Lévy trees that form a class of random compact
metric spaces introduced by Le Gall and Le Jan in [28] as the genealogy of Continuous
State Branching Processes (CSBP for short). The class of stable trees contains Aldous’s
continuum random tree that corresponds to the Brownian case (see [2, 3]). Stable trees
(and more generally Lévy trees) are the scaling limit of Galton-Watson trees (see [11]
Chapter 2 and [9]). Various geometric and distributional properties of Lévy trees (and
of stable trees, consequently) have been studied in [12] and in Weill [35]. An alternative
construction of Lévy trees is discussed in [15]. Stable trees have been also studied in
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connection with fragmentation processes: see Miermont [30, 31], Haas and Miermont [22],
Goldschmidt and Haas [20] for the stable cases and see Abraham and Delmas [1] for
related models concerning more general Lévy trees.

Fractal properties of stable trees have been discussed in [12] and [13]: Hausdorff and
packing dimensions of stable trees are computed in [12] and the exact Hausdorff measure
of Aldous’ continuum random tree is given in [13]. The same paper contains partial results
for the non-Brownian stable trees that suggest there is no exact Hausdorff measure in these
cases. In this paper we prove there is no exact packing measure for the level sets of stable
trees (including the Brownian case) and we also prove that there is no exact Hausdorff
measure with regularly varying gauge function for the non-Brownian stable trees and their
level sets.

Before stating the main results of the paper, let us recall the definition of stable CSBPs
and the definition of stable trees that represent the genealogy of stable CSBPs. CSBPs
are time- and space-continuous analogues of Galton-Watson Markov chains. They have
been introduced by Jirina [24] and Lamperti [25] as the [0,∞]-valued Feller processes
that are absorbed in states {0} and {∞} and whose kernel semi-group (pt(x, dy); x ∈
[0,∞], t ∈ [0,∞)) enjoys the branching property: pt(x, ·)∗pt(x′, ·) = pt(x+x

′, ·), for every
x, x′ ∈ [0,∞] and every t ∈ [0,∞). As pointed out in Lamperti [25], CSBPs are time-
changed spectrally positive Lévy processes. Namely, let Y = (Yt, t ≥ 0) be a Lévy process
starting at 0 that is defined on a probability space (Ω,F ,P) and that has no positive
jump. Let x ∈ (0,∞). Set At = inf{s ≥ 0 :

∫ s

0
du/(Yu + x) > t} for any t ≥ 0, and

Tx = inf{s ≥ 0 : Ys = −x}, with the convention that inf ∅ = ∞. Next set Zt = XAt∧Tx if
At ∧Tx is finite and set Zt = ∞ if not. Then, Z = (Zt, t ≥ 0) is a CSBP with initial state
x (see Helland [23] for a proof in the conservative cases). Recall that the distribution of Y
is characterized by its Laplace exponent ψ given by E[exp(−λYt)] = exp(tψ(λ)), t, λ ≥ 0
(see Bertoin [4] Chapter 7). Consequently, the law of the CSBP Z is also characterised
by ψ and it is called its branching mechanism.

We shall restrict to γ-stable CSBPs for which ψ(λ) = λγ, λ ≥ 0, where γ ∈ (1, 2]. The
case γ = 2 shall be refered as to the Brownian case (and the corresponding CSBP is the
Feller diffusion) and the cases 1 < γ < 2 shall be refered as to the non-Brownian stable
cases. Let Z be a γ-stable CSBP defined on (Ω,F ,P). As a consequence of a result due to
Silverstein [33], the kernel semigroup of Z is characterised as follows: for any λ, s, t ≥ 0,
one has E[exp(−λZt+s)|Zs] = exp(−Zsu(t, λ)), where u(t, λ) is the unique nonnegative
solution of ∂u(t, λ)/∂t = −u(t, λ)γ and u(0, λ) = λ. This ordinary differential equation
can be explicitly solved as follows.

u(t, λ) =
(

(γ−1)t+
1

λγ−1

)− 1
γ−1

, t, λ ≥ 0 . (1)

It is easy to deduce from this formula that γ-stable CSBPs get almost surely extinct in
finite time with probability one: P(∃t ≥ 0 : Zt = 0) = 1. We refer to Bingham [5] for
more details on CSBPs.
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Lévy trees have been introduced by Le Gall and Le Jan in [28] via a coding function
called the height process whose definition is recalled in Section 2.2. Let us briefly recall
the formalism discussed in [12] where Lévy trees are viewed as random variables taking
values in the space of all compact rooted R-trees. Informally, a R-tree is a metric space
(T , d) such that for any two points σ and σ′ in T there is a unique arc with endpoints σ
and σ′ and this arc is isometric to a compact interval of the real line. A rooted R-tree is a
R-tree with a distinguished point that we denote by ρ and that we call the root. We say
that two rooted R-trees are equivalent if there is a root-preserving isometry that maps
one onto the other. Instead of considering all compact rooted R-trees, we introduce the
set T of equivalence classes of compact rooted R-trees. Evans, Pitman and Winter in [18]
noticed that T equipped with the Gromov-Hausdorff distance [21], is a Polish space (see
Section 2.2 for more details).

With any stable exponent γ ∈ (1, 2] one can associate a sigma-finite measure Θγ on T

called the "law” of the γ-stable tree. Although Θγ is an infinite measure, one can prove
the following: Define Γ(T ) = supσ∈T d(ρ, σ) that is the total height of T . Then, for any
a ∈ (0,∞), one has

Θγ(Γ(T ) > a) = ((γ−1)a)−
1

γ−1

Stable trees enjoy the so-called branching property, that obviously holds true for Galton-
Watson trees. More precisely, for every a > 0, under the probability measure Θγ( · |Γ(T ) >
a) and conditionally given the part of T below level a, the subtrees above level a are dis-
tributed as the atoms of a Poisson point measure whose intensity is a random multiple of
Θγ , and the random factor is the total mass of the a-local time measure that is defined
below (see Section 2.2 for a precise definition). It is important to mention that Weill
in [35] proves that the branching property characterizes Lévy trees, and therefore stable
trees.

We now define Θγ by an approximation with Galton-Watson trees as follows. Let
ξ be a probability distribution on the set of nonnegative integers N. We first assume
that

∑

k≥0 kξ(k) = 1 and that ξ is in the domain of attraction of a γ-stable distribution.
More precisely, let Y1 be a random variable such that logE[exp(−λY1)] = λγ, for any
λ ∈ [0,∞). Let (Jk, k ≥ 0) be an i.i.d. sequence of r.v. with law ξ. We assume there
exists an increasing sequence (ap, p ≥ 0) of positive integers such that (ap)

−1(J1 + · · · +
Jp − p) converges in distribution to Y1. Denote by τ a Galton-Watson tree with offspring
distribution ξ that can be viewed as a random rooted R-tree (τ , δ, ρ) by affecting length 1
to each edge. Thus, (τ , 1

p δ, ρ) is the tree τ whose edges are rescaled by a factor 1/p and we
simply denote it by 1

pτ . Then, for any a ∈ (0,∞), the law of 1
pτ under P( · | 1

pΓ(τ ) > a)
converge weakly in T to the probability distribution Θγ( · |Γ(T ) > a), when p goes to ∞.
This result is Theorem 4.1 [12].

Let us introduce two important kinds of measures defined on γ-stable trees. Let
(T , d, ρ) be a γ-stable tree. For every a > 0, we define the a-level set T (a) of T as the
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set of points that are at distance a from the root. Namely,

T (a) :=
{

σ ∈ T : d(ρ, σ) = a
}

. (2)

We then define the random measure ℓa on T (a) in the following way. For every ε > 0,
write Tε(a) for the finite subset of T (a) consisting of those vertices that have descendants
at level a+ ε. Then, Θγ-a.e. for every bounded continuous function f on T , we have

〈ℓa, f〉 = lim
ε↓0

((γ−1)ε)
1

γ−1

∑

σ∈Tε(a)

f(σ). (3)

The measure ℓa is a finite measure on T (a) that is called the a-local time measure of T .
We refer to [12] Section 4.2 for the construction and the main properties of the local time
measures (ℓa, a ≥ 0) (see also Section 2.2 for more details). Theorem 4.3 [12] ensures we
can choose a modification of the local time measures (ℓa, a ≥ 0) in such a way that a 7→ ℓa

is Θγ-a.e. cadlag for the weak topology on the space of finite measures on T .
We next define the mass measure m on the tree T by

m =

∫ ∞

0

da ℓa . (4)

The topological support of m is T . Note that the definitions of the local time measures
and of the mass measure only involve the metric properties of T .

Let us mention that γ-stable trees enjoy the following scaling property: For any c ∈
(0,∞), the "law" of (T , c d, ρ) under Θγ is c1/(γ−1)Θγ . Then, it is easy to show that for
any a, c ∈ (0,∞) the law of c1/(γ−1) 〈ℓa/c〉 under Θγ is the law of 〈ℓa〉 under c1/(γ−1)Θγ

(here, 〈ℓb〉 stands for the total mass of the b-local time measure). Similarly, the law of
cγ/(γ−1) 〈m〉 under Θγ is the law of 〈m〉 under c1/(γ−1)Θγ. Since ℓa and m are in some sense
the most spread out measures on respectively T (a) and T , these scaling properties give
a heuristic explanation for the following results that concern the fractal dimensions of
stable tree (see [12] for a proof): For any a ∈ (0,∞), Θγ-a.e. on {T (a) 6= ∅} the Hausdorf
and the packing dimensions of T (a) are equal to 1/(γ − 1) and Θγ-a.e. the Hausdorf and
the packing dimensions of T are equal to γ/(γ − 1).

In this paper we discuss finer results concerning possible exact Hausdorff and packing
measures for stable tree and their level sets. We first state a result concerning the exact
packing measure for level sets. To that end, let us briefly recall the definition of packing
measures. Packing measures have been introduced by Taylor and Tricot in [34]. Though
their construction is done in Euclidian spaces, it easily extends to metric spaces and more
specifically to γ-stable trees. More precisely, for any σ ∈ T and any r ∈ [0,∞), let us
denote by B̄(σ, r) (resp. B(σ, r)) the closed (resp. open) ball of T with center σ and
radius r. Let A ⊂ T and ε ∈ (0,∞). A ε-packing of A is a countable collection of
pairwise disjoint closed balls B̄(xn, rn), n ≥ 0, such that xn ∈ A and rn ≤ ε. We restrict
our attention to packing measures associated with a regular gauge function in the following
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sense: A function g : (0, r0) → (0,∞) is a regular gauge function if it is continuous, non
decreasing, if lim0+ g = 0 and if there exists a constrant C ∈ (1,∞) such that

∃C > 1 : g(2r) ≤ Cg(r) , r ∈ (0, r0/2). (5)

Such a property shall be refered as to a C-doubling condition. We then set

P∗
g (A) = lim

ε↓0
sup

{

∑

n≥0

g(rn); (B̄(xn, rn), n ≥ 0) ε−packing of A
}

(6)

that is the g-packing pre-measure of A and we define the g-packing outer measure of A as

Pg(A) = inf
{

∑

n≥0

P∗
g (En); A ⊂

⋃

n≥0

En

}

. (7)

As in Euclidian spaces, Pg is a Borel regular metric outer measure (see Section 2.1 for
more details). The following theorem shows that the level sets of stable trees have no
exact packing measure, even in the Brownian case.

Theorem 1.1 Let γ ∈ (1, 2] and let us consider a γ-stable tree (T , d, ρ) under its excur-
sion measure Θγ. Let g : (0, 1) → (0,∞) be any continuous function such that

lim
r→0

r−
1

γ−1 g(r) = 0 . (8)

(i)If
∑

n≥1

[

2
n

γ−1 g(2−n)
]γ

< ∞, then for any a ∈ (0,∞), Θγ-a.e. on {T (a) 6= ∅} and for

ℓa-almost all σ, we have

lim inf
n→∞

ℓa(B(σ, 2−n))

g(2−n)
= ∞ . (9)

Moreover, if g is a regular gauge function, then Pg(T (a) ) = 0, Θγ-a.e.

(ii) If
∑

n≥1

[

2
n

γ−1 g(2−n)
]γ

= ∞, then for any a ∈ (0,∞), Θγ-a.e. and for ℓa-almost all

σ, we have

lim inf
n→∞

ℓa(B(σ, 2−n))

g(2−n)
= 0 . (10)

Moreover, if g is a regular gauge function, then Pg(T (a) ) = ∞, Θγ-a.e. on the
event {T (a) 6= ∅}.

This result is not surprising, even in the Brownian case, for it has been proved in [29]
that super-Brownian motion with quadratic branching mechanism has no exact packing
measure in the super-critical dimension d ≥ 3 and [29] provides a test that is closed in
some sense to the test given in the previous theorem.
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Remark 1.1 For any p ≥ 1, define recursively the functions logp by log1 = log and
logp+1 = logp ◦ log. The previous theorem provides the following family of critical gauge
functions for packing measures of level sets of a γ-stable tree: For any θ ∈ R and any
p ≥ 1, set

gp,θ(r) =
r

1
γ−1

(log(1/r) . . . logp(1/r))
1
γ (logp+1(1/r))

θ
.

If γθ > 1, then for any a ∈ (0,∞), one has Pgp,θ(T (a) ) = 0, Θγ-a.e. and if γθ ≤ 1, then
for any a ∈ (0,∞), one has Pgp,θ(T (a) ) = ∞, Θγ-a.e. on the event {T (a) 6= ∅}. �

Remark 1.2 Although the level sets of stable trees have no exact packing measure, the
whole γ-stable tree has an exact packing measure as shown in the preprint [10]. More
precisely, for any r ∈ (0, 1/e), we set

g(r) =
r

γ
γ−1

(loglog 1/r)
1

γ−1

.

Then, there exists c0 ∈ (0,∞) such that Pg = c0m, Θγ-a.e. �

Let us briefly recall the definition of Hausdorff measures on a γ-stable tree (T , d). Let
us fix a regular gauge function g. For any subset E ⊂ T , we set diam(E) = supx,y∈E d(x, y)
that is the diameter of E. For any A ⊂ T , the g-Hausdorff measure of A is then given by

Hg(A) = lim
ε↓0

inf
{

∑

n≥0

g(diam(En)); diam(En) < ε and A ⊂
⋃

n≥0

En

}

. (11)

As in the Euclidian case, Hg is a metric and Borel regular outer measure on T . In
the Brownian case Theorem 1.3 in [13] asserts that there exists a constant c1 ∈ (0,∞)
such that for any a ∈ (0,∞), Θ2-a.e. we have Hg1 ( · ∩ T (a) ) = c1 ℓ

a, where g1(r) =
r log log 1/r. The non-Brownian stable cases are quite different as shown by the following
proposition that asserts that in these cases, there is no exact upper-density for local time
measures. Let us mention that the first point of the theorem is proved in Proposition 5.2
[13].

Proposition 1.2 Let γ ∈ (1, 2) and let (T , d, ρ) be γ-stable tree under its excursion
measure Θγ. Let g : (0, 1) → (0,∞) be a continuous function such that

lim
r→0

g(r) = 0 and lim
r→0

r−
1

γ−1 g(r) = ∞ . (12)

(i)(Prop. 5.2 [13]) If
∑

n≥1
2−n

g(2−n)γ−1 <∞, then for any a ∈ (0,∞), Θγ-a.e. for ℓa-almost
all σ, we have

lim sup
n→∞

ℓa(B(σ, 2−n))

g(2−n)
= 0 . (13)

Moreover, if g is a regular gauge function, then Hg(T (a) ) = ∞, Θγ-a.e. on the
event {T (a) 6= ∅}.
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(ii) If
∑

n≥1
2−n

g(2−n)γ−1 = ∞, then for any a ∈ (0,∞), Θγ-a.e. on the event {T (a) 6= ∅}
and for ℓa-almost all σ, we have

lim sup
n→∞

ℓa(B(σ, 2−n))

g(2−n)
= ∞ . (14)

Recall that a function g is regularly varying at 0 with exponent q iff for any c ∈ (0,∞),
g(cr)/g(r) tend to cq when r goes to 0.

Theorem 1.3 Let γ ∈ (1, 2) and let (T , d, ρ) be γ-stable tree under its excursion measure
Θγ. Then the level sets of T have no exact Hausdorff measure with continuous regularly
varying gauge function. More precisely, let g : (0, 1) → (0,∞) be a regular gauge function
that is regularly varying at 0.

- Either for any a ∈ (0,∞), we Θγ-a.e. have Hg(T (a)) = ∞, on {T (a) 6= ∅},

- or for any a ∈ (0,∞), we Θγ-a.e. have Hg(T (a)) = 0.

Remark 1.3 Proposition 1.2 and Theorem 1.3 suggest that if

∑

n≥1

2−n

g(2−n)γ−1
= ∞ ,

then, Hg(T (a)) = 0, Θγ-a.e. as conjectured in [13]. The best result in this direction is
Theorem 1.5 in [13] that shows that Hg(T (a)) = 0, Θγ-a.e. if g is of the following form:

g(r) = r−
1

γ−1 (log
1

r
)

1
γ−1 (loglog

1

r
)u ,

with u < 0. �

Let us discuss now the Hausdorff properties of whole stable trees. In the Brownian
case, Theorem 1.1 in [13] asserts that there exists a constant c2 ∈ (0,∞) such that Θ2-
a.e. we have Hg2 = c2m, where g2(r) = r2 log log 1/r. In the non-Brownian stable cases,
the situation is quite different as shown by following proposition that asserts that in these
cases, the mass measure has no exact upper-density. Let us mention that the first point
of the theorem is proved in Proposition 5.1 [13].

Proposition 1.4 Let γ ∈ (1, 2) and let (T , d, ρ) be γ-stable tree under its excursion
measure Θγ. Let g : (0, 1) → (0,∞) be a function such that

lim
r→0

g(r) = 0 and lim
r→0

r−
γ

γ−1 g(r) = ∞ . (15)
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(i)(Prop. 5.1 [13]) If
∑

n≥1
2−γ n

g(2−n)γ−1 <∞, then Θγ-a.e. for m-almost all σ, we have

lim sup
n→∞

m(B(σ, 2−n))

g(2−n)
= 0 . (16)

Moreover, if g is a regular gauge function, then Hg(T ) = ∞, Θγ-a.e.

(ii) If
∑

n≥1
2−γ n

g(2−n)γ−1 = ∞, then Θγ-a.e. for m-almost all σ, we have

lim sup
n→∞

m(B(σ, 2−n))

g(2−n)
= ∞ . (17)

The previous proposition is completed by the following result.

Theorem 1.5 Let γ ∈ (1, 2) and let (T , d, ρ) be γ-stable tree under its excursion measure
Θγ. Then T has no exact Hausdorff measure with continuous regularly varying gauge
function. More precisely, let g : (0, 1) → (0,∞) be a regular gauge function that is
regularly varying at 0.

- Either Hg(T ) = ∞, Θγ-a.e.

- or Hg(T ) = 0, Θγ-a.e.

Remark 1.4 Proposition 1.4 and Theorem 1.5 suggest that if

∑

n≥1

2−γ n

g(2−n)γ−1
= ∞

then, Hg(T ) = 0, Θγ-a.e. as conjectured in [13]. The best result in this direction is
Theorem 1.4 in [13] that show that Hg(T ) = 0, Θγ-a.e. if g is of the following form:

g(r) = r−
γ

γ−1 (log
1

r
)

1
γ−1 (loglog

1

r
)u ,

with u < 0. �

The paper is organised as follows. In Section 2.1, we recall the basic comparison results
on Hausdorff and packing measures in metric spaces. In Section 2.2, we introduce the
γ-stable height processes and the γ-stable trees, and we recall a key decomposition of
stable trees according the ancestral line of a randomly chosen vertex that is used to prove
the upper- and lower-density results for the local time measures and the mass measure.
In Section 2.3, we state various estimates that are used in the proof sections. Section 3 is
devoted to the proofs of the main results of the paper.
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2 Notation, definitions and preliminary results.

2.1 Hausdorff and packing measures on metric spaces.

Though standard in Euclidian spaces (see Taylor and Tricot [34]), packing measures are
less usual in Polish spaces that is why we briefly recall few results in this section. As
already mentioned, we restrict our attention to continuous gauge functions that satisfy a
doubling condition: Let us fix C > 1. We denote by GC the set of such regular gauge
functions that satisfy a C-doubling condition and we set G =

⋃

C>1 GC that is the set
of the gauge functions we shall consider. Let us mention that, instead of regular gauge
functions, some authors speak of blanketed Hausdorff functions after Larman [26].

Let (T , d) be an uncountable complete and separable metric space. Let us fix g ∈ GC .
Recall from (7) the definition of the g-packing measure Pg and from (11) the definition
of the g-Hausdorff measure Hg. We shall use the following comparison results.

Lemma 2.1 (Taylor and Tricot [34], Edgar [16]). Let g ∈ GC . Then, for any finite Borel
measure µ on T and for any Borel subset A of T , the following holds true.

(i)If lim infr→0
µ(B(σ,r))

g(r)
≤ 1, for any σ ∈ A, then Pg(A) ≥ C−2µ(A).

(ii)If lim infr→0
µ(B(σ,r))

g(r)
≥ 1, for any σ ∈ A, then Pg(A) ≤ µ(A).

(iii)If lim supr→0
µ(B(σ,r))

g(r)
≤ 1, for any σ ∈ A, then Hg(A) ≥ C−1µ(A).

(iv)If lim supr→0
µ(B(σ,r))

g(r)
≥ 1, for any σ ∈ A, then Hg(A) ≤ Cµ(A).

Points (iii) and (iv) in Euclidian spaces are stated in Lemmas 2 and 3 in Rogers and
Taylor [32]. Points (i) and (ii) in Euclidian spaces can be found in Theorem 5.4 in Taylor
and Tricot [34]. We refer to Edgar [16] for a proof of Lemma 2.1 for general metric spaces:
For (i) and (ii), see Theorem 4.15 [16] in combination with Proposition 4.24 [16]. For
(iii) and (iv), see Theorem 5.9 [16].

Remark 2.1 Our definition of g-packing measures (that is Edgar’s definition in [16]
Section 5) is slightly different from that of Taylor and Tricot in [34] who use open balls
packing and g(diam(·)) as set function. However, since the gauge function is continuous
and since it satisfies a doubling condition, the corresponding packing measure is equivalent
to ours. It only change the bounds in (iii) and (iv) in a obvious way. �

2.2 Height processes and Lévy trees.

In this section we recall (mostly from [11] and [12]) various results concerning stable height
processes and stable trees that are used in Sections 2.3 and in the proof sections.
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The height process. We fix γ ∈ (1, 2]. It is convenient to work on the canonical
space D([0,∞),R) of cadlag paths equipped with Skorohod distance and the corresponding
Borel sigma field. We denote by X = (Xt, t ≥ 0) the canonical process and by P the
canonical distribution of a γ-stable and spectrally positive Lévy process with Laplace
exponent ψ(λ) = λγ . Namely, E[exp(−λXt)] = exp(tλγ), for any λ, t ≥ 0. Note that Xt

is integrable and that E[Xt] = 0, which easily implies that X oscillates when t goes to
infinity. P-a.s. the path X has infinite variation (for more details, see Bertoin [4] Chapters
VII and VIII ).

In the more general context of spectrally positive Lévy processes, it has been proved
in Le Gall and Le Jan [28] and in [11] Chapter 1 that there exists a continuous process
H = (Ht, t ≥ 0) such that for any t ≥ 0, the following limit holds in P-probability.

Ht := lim
ε→0

1

ε

∫ t

0

1{Ist<Xs<Ist+ε} ds , (18)

where Ist stands for infs≤r≤tXr. The process H = (Ht, t ≥ 0) is called the γ-stable height
process. As we see below, H provides a way to explore the genealogy of a γ-stable CSBP.
We refer to Le Gall and Le Jan [28] for a careful explanation of (18) in the discrete setting.

For any c ∈ (0,∞), it is easy to prove that (c−1/γXct, t ≥ 0) has the same law as X
and we easily derive from (18) that, under P, one has

(

c−
γ−1
γ Hct, t ≥ 0

) (law)
= (Ht, t ≥ 0) . (19)

Excursions of the height process. In the Brownian case γ = 2, X is distributed
as a Brownian motion and (18) easily implies that H is proportional to X − I, which
is distributed as a reflected Brownian motion. In more general cases, H is neither a
Markov process nor a martingale. However it is possible to develop an excursion theory
for H as follows. Recall that X has infinite variation sample paths. Basic results on
fluctuation theory (see [4] Chapter VI.1 and VII.1) entail that X − I is a strong Markov
process in [0,∞) and that 0 is regular for (0,∞) and recurrent with repect to this Markov
process. Moreover, −I is a local time at 0 for X − I (see Theorem VII.1 [4]). Denote
by Nγ the corresponding excursion measure of X − I above 0 and denote by (aj, bj),
j ∈ I, the excursion intervals of X − I above 0 and by Xj = X(aj+·)∧bj − Iaj , j ∈ I,
the corresponding excursions. Then, the point measure

∑

j∈I δ(−Iaj ,X
j) is a Poisson point

measure on [0,∞) × D([0,∞),R) with intensity dx ⊗ Nγ(dX). Now, observe that (18)
implies that the value of Ht only depends of the excursion of X − I straddling t and that
⋃

j∈I (aj , bj) = {t ≥ 0 : Ht > 0}. This allows to define H under Nγ (see the comments in
Section 3.2 [11] for more details). We use the slightly abusive notation Nγ(dH) for the
"distribution" of H under the excursion measure Nγ of X − I above 0. For any j ∈ I,
we set Hj = H(aj+·)∧bj . Then the Hjs are the excursions of H above 0, and the point
measure

∑

j∈I

δ(−Iaj ,H
j) (20)
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is distributed under P as Poisson point measure on [0,∞) × D([0,∞),R) with intensity
dx⊗Nγ(dH).

Set ζ := inf{t > 0 : Xt = 0} that is the total duration of X under Nγ . Since X does
not drift to ∞, the lifetime ζ is finite Nγ-a.e. Moreover, Nγ-a.e. H0 = Hζ = 0 and Ht > 0
for any t ∈ (0, ζ). We easily deduce from (19) the following scaling property for H under
Nγ : For any c ∈ (0,∞) and for any measurable function F : D([0,∞),R) → [0,∞), one
has

c
1
γNγ

(

F (c−
γ−1
γ Hct, t ≥ 0)

)

= Nγ

(

F (Ht, t ≥ 0)
)

. (21)

Local times of the height process. We recall here from [11] Chapter 1 Section
1.3 the following result: There exists a jointly measurable process (La

s , a, s ≥ 0) such that
P-a.s. for any a ≥ 0, s→ La

s is continuous and non-decreasing and such that

∀t, a ≥ 0, lim
ε→0

E

[

sup
0≤s≤t

∣

∣

∣

∣

1

ε

∫ s

0

dr1{a<Hr≤a+ε} − La
s

∣

∣

∣

∣

]

= 0 . (22)

The process (La
s , s ≥ 0) is called the a-local time of H . Recall that I stands for the

infinimum process of X. Then, the following properties of local-times of H hold true:
First observe that L0

t = −It, t ≥ 0. Second, the support of the random Stieltjes measure
dLa

· is contained in the closed set {t ≥ 0 : Ht = a}. Moreover, a general version of the
Ray-Knight theorem for H asserts the following: For any x ≥ 0, set Tx = inf{t ≥ 0 :
Xt = −x}. Then, the process (La

Tx
; a ≥ 0) is a distributed as a γ-stable CSBP with

initial state x. We refer to Le Gall and Le Jan [28] Theorem 4.2 or to [11] Theorem 1.4.1
for a proof of this general version of Ray-Knight Theorem.

The CSBP (La
Tx

; a ≥ 0) admits a cadlag modification that is denoted in the same
way to simplify notation. An easy argument deduced from the approximation (22) entails

that
∫ a

0
Lb
Tx
db =

∫ Tx

0
1{Ht≤a}dt. This remark combined with an elementary formula on

CSBPs (whose proof can be found in Le Gall [27]) entails that

E

[

exp
(

−µLa
Tx

− λ

∫ Tx

0

1{Ht≤a}dt
)]

= exp
(

− xκa(λ, µ)
)

, a, λ, µ ≥ 0, (23)

where κa(λ, µ) is the unique solution of the following differential equation

κ0(λ, µ) = λ and
∂κa
∂a

(λ, µ) = λ− κa(λ, µ)
γ , a, λ, µ ≥ 0. (24)

The function κ plays an important role and we shall turn back to it further.

It is possible to define the local times of H under the excursion measure Nγ as follows.
For any b > 0, let us set v(b) = Nγ(supt∈[0,ζ] Ht > b). The continuity of H and the Poisson
decomposition (20) obviously imply that v(b) < ∞, for any b > 0. It is moreover clear
that v is non-increasing and lim∞ v = 0. For every a ∈ (0,∞), we then define a continuous
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increasing process (La
t , t ∈ [0, ζ ]), such that for every b ∈ (0,∞) and for any t ≥ 0, one

has

lim
ε→0

Nγ

(

1{supH>b} sup
0≤s≤t∧ζ

∣

∣

∣

∣

1

ε

∫ s

0

dr1{a−ε<Hr≤a} − La
s

∣

∣

∣

∣

)

= 0. (25)

See [11] Section 1.3 for more details. The process (La
t , t ∈ [0, ζ ]) is the a-local time of the

height process. Note that Nγ-a.e. the support of the Stieltjes measure dLa
· is contained

in {t : Ht = a}.
Recall notation (aj , bj), j ∈ I, for the excursion intervals of H above 0 and set ζj =

bj − aj that is the the total duration of the excursion Hj. One easily deduces from (25)

that µLa
Tx + λ

∫

Tx
0 1{Ht≤a}dt =

∑

µ(La
bj
− La

aj ) + λ
∫ ζj

0 1{Hj
t≤a}dt, where the sum in the

right member is taken over the set indices j ∈ I such that −Iaj ≤ x. Therefore, (20)
entails that

Nγ

(

1− e−µLa
ζ−λ

∫ a
0 1{Ht≤a}dt

)

= κa(λ, µ) , a, λ, µ,≥ 0. (26)

We refer to [11] Chapter 1 for more details. By taking λ = 0 in the previous display, we
get Nγ(1− exp(−µLa

ζ ) ) = u(a, µ), where u is given by (1). This easily entails

∀a ≥ 0 , Nγ(L
a
ζ) = 1 . (27)

Let us also mention from [11] the following formula

∀a > 0 , v(a) = Nγ

(

supHt ≥ a
)

= Nγ

(

La
ζ 6= 0

)

=
(

(γ−1)a
)− 1

γ−1 . (28)

Lévy trees. We first define R-trees (or real trees) that are metric spaces that gen-
eralise graph-trees.

Definition 2.1 Let (T, δ) be a metric space. It is a real tree iff the following holds true
for any σ1, σ1 ∈ T .

(a)There is a unique isometry fσ1,σ2 from [0, δ(σ1, σ2)] into T such that fσ1,σ2(0) = σ1 and
fσ1,σ2(δ(σ1, σ2)) = σ2. We denote by [[σ1, σ2]] the geodesic joining σ1 to σ2. Namely,
[[σ1, σ2]] := fσ1,σ2([0, δ(σ1, σ2)])

(b)If j is a continuous injective map from [0, 1] into T , such that j(0) = σ1 and j(1) = σ2,
then we have j([0, 1]) = [[σ1, σ2]].

A rooted R-tree is an R-tree (T, δ) with a distinguished point r called the root. �

Among metric spaces, R-trees are characterized by the so-called four points inequality
that is expressed as follows. Let (T, δ) be a connected metric space. Then, (T, δ) is a
R-tree iff for any σ1, σ2, σ3, σ4 ∈ T , we have

δ(σ1, σ2) + δ(σ3, σ4) ≤
(

δ(σ1, σ3) + δ(σ2, σ4)
)

∨
(

δ(σ1, σ4) + δ(σ2, σ3)
)

. (29)
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We refer to Evans [17] or to Dress, Moulton and Terhalle [8] for a detailed account on
this property. The set of all compact rooted R-trees can be equipped with the pointed
Gromov-Hausdorff distance in the following way. Let (T1, δ1, r1) and (T2, δ2, r1) be two
compact pointed metric spaces. They can be compared one with each other thanks to the
pointed Gromov-Hausdorff distance defined by

dGH(T1, T2) = inf δH
(

j1(T1), j2(T2)
)

∨ δ
(

j1(r1), j2(r2)
)

.

Here the infimum is taken over all (j1, j2, (E, δ)), where (E, δ) is a metric space, where
j1 : T1 → E and j2 : T2 → E are isometrical embeddings and where δH stands for the usual
Hausdorff metric on compact subsets of (E, δ). Obviously dGH(T1, T2) only depends on
the isometry classes of T1 and T2 that map r1 to r2. In [21], Gromov proves that dGH is a
metric on the set of the equivalence classes of pointed compact metric spaces that makes
it a complete and separable metric space. Let us denote by T, the set of all equivalence
classes of rooted compact real-trees. Evans, Pitman and Winter observed in [18] that T

is dGH-closed. Therefore, (T, dGH) is a complete separable metric space (see Theorem 2
of [18]).

Let us briefly recall how R-trees can be obtained via continuous functions. We consider
a continuous function h : [0,∞) → R such that there exists a ∈ [0,∞) such that h is
constant on [a,∞). We denote by ζh the least of such real numbers a and we view ζh as
the lifetime of h. Such a continuous function is said to be a coding function. To avoid
trivialities, we also assume that h is not constant. Then, for every s, t ≥ 0, we set

bh(s, t) = inf
r∈[s∧t,s∨t]

h(r) and dh(s, t) = h(s) + h(t)− 2bh(s, t). (30)

Clearly dh(s, t) = dh(t, s). It is easy to check that dh satisfies the four points inequality,
which implies that dh is a pseudo-metric. We then introduce the equivalence relation
s ∼h t iff dh(s, t) = 0 (or equivalently iff h(s) = h(t) = bh(s, t)) and we denote by
Th the quotient set [0, ζh]/ ∼h. Standard arguments imply that dh induces a metric on
Th that is also denoted by dh to simplify notation. We denote by ph : [0, ζh] → Th
the canonical projection. Since h is continuous, ph is a continuous function from [0, ζh]
equipped with the usual metric onto (Th, dh). This implies that (Th, dh) is a compact and
connected metric space that satisfies the four points inequality. It is therefore a compact
R-tree. Next observe that for any t0, t1 ∈ [0, ζh] such that h(t0) = h(t1) = min h, we have
ph(t0) = ph(t1); so it makes sense to define the root of (Th, dh) by ρh = ph(t0). We shall
refer to the rooted compact R-tree (Th, dh, ρh) as to the tree coded by h.

We next define the γ-stable tree as the tree coded by the γ-stable height process
(Ht, 0 ≤ t ≤ ζ) under the excursion measure Nγ and to simplify notation we set

(TH , dH , ρH) = (T , d, ρ) .

We also set p = pH : [0, ζ ] → T . Note that ρ = p(0). Since Hζ = 0 and since Ht > 0, for
any t ∈ (0, ζ), ζ is the only time t ∈ [0, ζ ] distinct from 0 such that p(t) = ρ.
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Let us denote by T̄ the root-preserving isometry class of (T , d, ρ). It is proved in [12]
that T̄ is measurable in (T, dGH). We then define Θγ as the "distribution" of T̄ under
Nγ .

Remark 2.2 We have stated the main results of the paper under Θγ because it is more
natural and because Θγ has an intrinsic characterization as shown by Weill in [35]. How-
ever, each time we make explicit computations with stable trees, we have to work with
random isometry classes of compact real trees, which causes technical problems (mostly
measurability problems). To avoid these unnecessary complications during the intermedi-
ate steps of the proofs, we prefer to work with the specific compact rooted real tree (T , d, ρ)
coded by the γ-stable height process H under Nγ rather than directly work under Θγ. So,
we prove the results of the paper for (T , d, ρ) under Nγ, which easily implies the same
results under Θγ. �

The local time measures and the mass measure on γ-stable trees. As above
mentioned, we now work with the γ-stable tree (T , d, ρ) coded by H under the excursion
measure Nγ. A certain number of definitions and ideas can be extended from graph-trees
to real trees such as the degree of a vertex. Namely, for any σ ∈ T , we denote by n(σ) the
(possibly infinite) number of connected components of the open set T \{σ}. We say that
n(σ) is the degree of σ. Let σ be a vertex distinct from the root. If n(σ) = 1, then we say
that σ is a leaf of T ; if n(σ) = 2, then we say that σ is a simple point; if n(σ) ≥ 3, then
we say that σ is a branching point of T . If n(σ) = ∞, we then speak of σ as an infinite
branching point. We denote by Lf(T ) the set leaves of T , we denote by Br(T ) the set
of branching points of T and we denote by Sk(T ) = T \Lf(T ) the skeleton of T . Note
that the closure of the skeleton is the whole tree Sk(T ) = T . Let us mention that H is
not constant on every non-empty open subinterval of [0, ζ ], Nγ-a.e. This easily entails the
following characterisation of leaves in terms of the height process: For any t ∈ (0, ζ),

p(t) ∈ Lf(T ) ⇐⇒ ∀ε > 0 , inf
s∈[t−ε,t]

Hs and inf
s∈[t,t+ε]

Hs < Ht . (31)

Let us now define the the mass measure and the local time measures on T : The mass
measure m is the measure induced by the Lebesgue measure ℓ on [0, ζ ] via p. Namely, for
any Borel set A of T , we have m(A) = ℓ(p−1(A)). We can prove that the mass measure
is diffuse and its topological support is clearly T . Moreover m is supported by the set of
leaves:

m
(

Sk(T )
)

= 0 . (32)

For any a ∈ (0,∞), the a-local time measure ℓa is the measure induced by dLa
· via p.

Namely,

〈ℓa, f〉 =

∫ ζ

0

dLa
sf(p(s)) ,
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for any positive measurable application f on T . Let us mention that the topological
support of ℓa is included in the a-level set T (a) = {σ ∈ T : d(ρ, σ) = a} and note from
the definition that the total mass 〈ℓa〉 of ℓa is La

ζ . Moreover, observe that T (a) is not
empty iff supH ≥ a. Then, (28) can be rewritten as follows.

∀ a > 0, v(a) = Nγ

(

T (a) 6= ∅
)

= Nγ (ℓ
a 6= 0) =

(

(γ−1)a
)− 1

γ−1 . (33)

As already mentioned, the a-local time measure ℓa can be defined in a purely metric way
by (3) and there exists a modification of local time measures (ℓa, a ≥ 0) such that a 7→ ℓa

is Nγ-a.e. cadlag for the weak topology on the space of finite measures on T . Except in
the Brownian case, a 7→ ℓa is not continuous and Theorem 4.7 [12] asserts that there is
a one-to-one correspondence between the times of discontinuity of a 7→ ℓa, the infinite
branching points of T and the jumps of the excursion X of the underlying γ-stable Lévy
process. More precisely, a is a time-discontinuity of a 7→ ℓa iff there exists a unique
infinite branching point σa ∈ T (a) such that ℓa− = ℓa + λaδσa . Moreover, a point σ ∈ T
is an infinite branching point iff there exists t ∈ [0, ζ ] such that p(t) = σ and ∆Xt > 0;
if furthermore σ = σa, then λa = ∆Xt. Now, observe that if σ ∈ T (a) is an atom of
ℓa, the definition (3) of ℓa entails that σ is an infinite branching point and that a is a
time-discontinuity of a 7→ ℓa. Thus, σ = σa. Recall that the Ray-Knight theorem for H
asserts that a 7→ 〈ℓa〉 is distributed as a CSBP (under its excursion measure), which has
no fixed time-discontinuity. This (roughly) explains the following.

∀ a > 0, Nγ −a.e. ℓa is diffuse. (34)

We refer to [12] for more details.

The branching property for H. We now describe the distribution of excursions
of the height process above level b (or equivalently of the corresponding stable tree above
level b). Let us fix b ∈ (0,∞), and denote by (gb

j , db
j), j ∈ Ib, the connected components of

the open set {t ≥ 0 : Ht > b}. For any j ∈ Ib, denote by H b,j the corresponding excursion
of H that defined by H b,j

s = H(gbj+s)∧dbj
− b, s ≥ 0.

This decomposition is interpreted in terms of the tree as follows. Recall that B̄(ρ, b)
stands for the closed ball with center ρ and radius b. Observe that the connected compo-
nent the open set T \B̄(ρ, b) are the subtrees T̃ b,o

j := p((gb
j , db

j)), j ∈ Jb. The closure T b
j

of T b,o
j is simply {σb

j} ∪ T b,o
j , where σb

j = p(gb
j ) = p(db

j), that is the points on the b-level
set T (b) at which T b,o

j is grafted. Observe that the rooted compact R-tree (T b
j , d, σb

j ) is
isometric to the tree coded by H b,j .

We then define H̃b
s = Hτbs

, where for every s ≥ 0, we have set

τ bs = inf
{

t ≥ 0 :

∫ t

0

ds 1{Hs≤b} > s
}

.
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The process H̃b = (H̃b
s , s ≥ 0) is the height process below b and the rooted compact R-tree

(B̄(ρ, b), d, ρ) is isometric to the tree coded by H̃b. Let Gb be the sigma-field generated
by H̃b augmented by the Nγ-negligible sets. From the approximation (25), it follows that
Lb

ζ is measurable with respect to Gb. We next use the following notation

N (b)
γ = Nγ( · | supH > b) (35)

that is a probability measure and we define the following point measure on [0,∞) ×
D([0,∞),R):

Mb =
∑

j∈Ib

δ(Lb

gb
j

,Hb,j) (36)

The branching property at level b then asserts that under N (b)
γ , conditionally given Gb, Mb

is distributed as a Poisson point measure with intensity 1[0,Lb
ζ ]
(x)dx⊗Nγ(dH). We refer

to Proposition 1.3.1 in [11] or the proof of Proposition 4.2.3 [11]. Let us mention that it
is possible to rewrite intrinsically the branching property under Θγ: we refer to Theorem
4.2 [12] for more details.

Spinal decomposition at a random time. We recall another decomposition of
the height process (and therefore of the corresponding tree) that is proved in [11] Chapter
2 and in [12] under a more explicit form (see also [14] for further applications). This
decomposition is used in a crucial way in the proof of the upper- and lower-density results
for the local times measures and the mass measure. Let us introduce an auxiliary proba-
bility space (Ω,F ,P) that is assumed to be rich enough to carry the various independent
random variables we shall need.

Let (Ut, t ≥ 0) be a subordinator defined on (Ω,F ,P) with initial value U0 = 0 and
with Laplace exponent ψ′(λ) = γλγ−1, λ ≥ 0. Let

N ∗ =
∑

j∈I∗

δ(r∗j , H∗j) (37)

be a random point measure on [0,∞)×D([0,∞),R) defined on (Ω,F ,P) such that a reg-
ular version of the law of N ∗ conditionally given U is that of a Poisson point measure with
intensity dUr ⊗ Nγ(dH). Here dUr stands for the (random) Stieltjes measure associated
with the non-decreasing path r 7→ Ur. For any a ∈ (0,∞), we also set

N ∗
a =

∑

j∈I∗

1[0,a](r
∗
j ) δ(r∗j ,H∗j). (38)

We next consider the γ-height process H under its excursion measure Nγ. For any t ≥ 0,

we set Ĥ t := (H(t−s)+ , s ≥ 0) (here, ( ·)+ stands for the positive part function) and Ȟ t :=
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(H(t+s)∧ζ , s ≥ 0). We also define the random point measure Nt on [0,∞)× D([0,∞),R)
by

Nt = N (Ĥ t) +N (Ȟ t) :=
∑

j∈Jt

δ(rtj ,H∗ t,j) , (39)

where for any continuous function h : [0,∞) → [0,∞) with compact support, the point
measure N (h) is defined as follows: Set h(t) = inf [0,t] h and denote by (gi, di), i ∈ I(h) the
excursion intervals of h − h away from 0 that are the connected component of the open
set {t ≥ 0 : h(t)− h(t) > 0}. For any i ∈ I(h), set hi(s) = ((h− h)((gi + s)∧ di) , s ≥ 0).
We then define N (h) as the point measure on [0,∞)× D([0,∞),R) given by

N (h) =
∑

i∈I(h)

δ(h(gi),hi) .

Lemma 3.4 in [12] asserts the following. For any a and for any nonnegative measurable
function F on the set of positive measures on [0,∞) × D([0,∞),R) (equipped with the
topology of the vague convergence), one has

Nγ

(
∫ ζ

0

dLa
t F
(

Nt

)

)

= E [F (N ∗
a )] . (40)

We shall refer to this identity as to the spinal decomposition of H at a random time.

Let us briefly interpret this decomposition in terms of the γ-stable tree T coded by
H . Choose t ∈ (0, ζ) and set σ = p(t) ∈ T . Then the geodesic [[ρ, σ]] is interpreted as the
ancestral line of σ. Let us denote by T o

j , j ∈ J , the connected components of the open
set T \[[ρ, σ]] and denote by Tj the closure of T o

j . Then, there exists a point σj ∈ [[ρ, σ]]
such that Tj = {σj } ∪ T o

j . Recall notation (rtj , H∗ t,j ), j ∈ Jt from (39). The specific
coding of T by H entails that for any j ∈ J there exists a unique j′ ∈ Jt such that
d(ρ, σj ) = rtj′ and such that the rooted compact R-tree (Tj , d, σj ) is isometric to the tree
coded by H∗ t,j′

We now compute m(B̄(p(t), r)) in terms of Nt as follows. First, recall from (30) the
definition of b(s, t) and d(s, t). Note that if Hs = b(s, t) with s 6= t, then p(s) ∈ Sk(T ) by
(31). Let us fix a radius r in (0, Ht). Then, (32) entails

m
(

B̄(p(t), r)
)

=

∫ ζ

0

1{d(s,t)≤r}ds =

∫ ζ

0

1{0<Hs−b(s,t)≤r−Ht+b(s,t)}.

The definition of (N (Ĥ t),N (Ȟ t)) entails

m
(

B(p(t), r)
)

=
∑

j∈Jt

1[Ht−r ,Ht](r
t
j) ·

∫ ζtj

0

1{H∗ t,j
s ≤r−Ht+rtj}

ds, (41)
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where ζ tj stands for the lifetime of the path H∗ t,j . For any a ∈ (0,∞) and for any r ∈ [0, a],
we next set

M∗
r (a) =

∑

j∈I∗

1[a−r,a](r
∗
j ) ·

∫ ζ∗j

0

1{H∗j
s ≤r−a+r∗j }

ds , (42)

where ζ∗j stands for the lifetime of the path H∗j. Then, (M∗
r (a), r ∈ [0, a]) is a cadlag

increasing process defined on (Ω,F ,P). The spinal decomposition (40) implies that for
any a ∈ (0,∞) and for any bounded measurable F : D([0, a],R) → R, we have

Nγ

(
∫ ζ

0

dLa
t F
(

(

m(B̄(p(t), r))
)

r∈[0,a]

)

)

= E
[

F
(

(M∗
r (a))r∈[0,a]

)]

.

Since the a-local time measure is the image measure of dLa
· by the canonical projection

p, we get

Nγ

(
∫

T

ℓa(dσ)F
(

(

m(B̄(σ, r))
)

r∈[0,a]

)

)

= E
[

F
(

(M∗
r (a))r∈[0,a]

)]

. (43)

This identity is used in the proof of Proposition 1.4.
Let us discuss a similar formula for the a-local time measure: Let t ∈ [0, ζ ] be such

that Ht = a. Namely p(t) ∈ T (a). We fix r ∈ (0, 2a). Then observe that for any s ∈ [0, ζ ]
such that Hs = a, we have d(s, t) ≤ r iff b(s, t) ≥ a− (r/2). We then get

ℓa
(

B(p(t), r)
)

= ℓa({p(t)}) +
∑

j∈Jt

1[a− r
2
, a)(r

t
j)L

a−rtj
ζtj

(t, j) , (44)

where L
a−rt

j

ζt
j

(t, j) stands for the local time at level a− rtj of the excursion H∗t,j. Next, for

any a ≥ 0 and any r ∈ (0, 2a), we set

L∗
r(a) =

∑

j∈I∗

1[a− r
2
, a](r

∗
j )L

a−r∗j
ζ∗j

ds , (45)

where, L
a−r∗

j

ζ∗
j

stands for the local time at level a− r∗j of the excursion H∗j.

Now (34) entails that ℓa({p(t)}) = 0, Nγ-a.e. and (44) combined with the spinal
decomposition (40) implies that for any a ∈ (0,∞) and for any bounded measurable
F : D([0, a],R) → R, we have

Nγ

(
∫

T

ℓa(dσ)F
(

(

ℓa(B̄(σ, r))
)

r∈[0,2a]

)

)

= E
[

F
(

(L∗
r(a))r∈[0,2a]

)]

(46)

This identity is used to prove Theorem 1.1 and Proposition 1.2.
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2.3 Estimates.

Let us fix a > 0. Recall the definition of the a-local time measure ℓa (whose total mass
〈ℓa〉 is equal to La

ζ) and recall that

Nγ

(

1− e−λ〈ℓa〉
)

= Nγ

(

1− e−λLa
ζ
)

= u(a, λ) =
(

(γ−1)a+
1

λγ−1

)− 1
γ−1

. (47)

Next recall from (35) the definition of N (a)
γ . We easily deduce from (28) and (47) that

N (a)
γ

(

exp(−λ〈ℓa〉)
)

= 1−
( (γ−1)aλγ−1

1 + (γ−1)aλγ−1

)
1

γ−1
. (48)

Consequently,

a−
1

γ−1 〈ℓa〉 under N (a)
γ

(law)
= 〈ℓ1〉 under N (1)

γ . (49)

Lemma 2.2 For any γ ∈ (1, 2], we have

N (1)
γ

(

〈ℓ1〉 ≤ x
)

∼x→0+
xγ−1

(γ−1)2Γ(γ)
.

Proof: From (48), we get

N (1)
γ

(

exp(−λ〈ℓ1〉)
)

∼λ→∞
λ−(γ−1)

(γ − 1)2
.

The desired result is then a direct consequence of a Tauberian theorem due to Feller: see
[19] Chapter XIII § 5 (see also [7] Theorem 1.7.1’, p. 38 ). �

Recall the notation N ∗ and the definition of L∗
r(a) from (45). For any 0 ≤ r′ ≤ r ≤ 2a,

we set
Λr′,r(a) =

∑

j∈I∗

1[a− r
2
, a− r′

2
)(r

∗
j ) L

a−r∗
j

ζ∗
j

. (50)

Observe that
∀ 0 ≤ r′ ≤ r ≤ 2a , L∗

r(a) = Λr′,r(a) + L∗
r′(a). (51)

Lemma 2.3 Let (rn, n ≥ 0) be a sequence such that 0 < rn+1 ≤ rn ≤ 2a and limn rn = 0.
Then, the random variables (Λrn+1,rn(a), n ≥ 0) are independent and

L∗
r0(a) =

∑

n≥0

Λrn+1,rn(a) . (52)
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Proof: First, note that (52) is a direct consequence of the definitions of Λr′,r(a) and of
L∗
r(a). Let us prove the independence property. Recall that conditionally given U , N ∗ is

a Poisson point process with intensity dUt ⊗ Nγ(dH). Elementary properties of Poisson
point processes and the definition of the Λrn+1,rn(a)s entail that the random variables
(Λrn+1,rn(a), n ≥ 0) are independent conditionally given U . Moreover, the conditional
distribution of Λrn+1,rn(a) given U only involves the increments of U on [rn+1, rn], which
easily implies the desired result since U is a subordinator. �

Remark 2.3 The previous lemma and (51) imply that for any 0 ≤ r′ ≤ r ≤ 2a, one has
L∗
r(a) ≥ Λr′,r(a) and that Λr′,r(a) is independent of L∗

r′(a). Observe also that the process
r 7→ L∗

r(a) has independent increments. �

Lemma 2.4 For any 0 ≤ r′ ≤ r ≤ 2a, we have

E
[

exp(−λΛr′,r(a))
]

=

(

γ−1
2 r′λγ−1 + 1

γ−1
2 rλγ−1 + 1

)

γ
γ−1

. (53)

Consequently, we get

r−
1

γ−1Λr′,r(a)
(law)
= Λ r′

r
,1
(1) .

Proof: First observe that the second point is an immediate consequence of the first
one. Recall that conditionally given U , N ∗ is distributed as a Poisson point process with
intensity dUt ⊗Nγ. Therefore,

E
[

exp
(

− λΛr′,r(a)
)

|U
]

= exp
(

−

∫

[a−r/2,a−r′/2 )

dUt Nγ

(

1− e−λLa−t
ζ
)

)

.

Recall that u(a− t, λ) = Nγ

(

1 − e−λLa−t
ζ
)

, where u is given by (1) and recall that U is a
subordinator with Laplace exponent λ 7→ γλγ−1. Thus,

E
[

exp
(

− λΛr′,r(a)
)]

= exp
(

− γ

∫ a−r′/2

a−r/2

u(a− t, λ)γ−1dt
)

,

which entails the desired result thanks to a simple change of variable. �

Taking r′ = 0 in the previous lemma entails the following.

Lemma 2.5 For any a ∈ (0,∞) and for any r ∈ [0, 2a], we have

E
[

exp(−λL∗
r(a))

]

=
(

1 +
γ−1

2
rλγ−1

)− γ
γ−1 .

Then, r−1/(γ−1)L∗
r(a) has the same law as L∗

1(1).
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To simplify notation, we set

Zγ := L∗
1(1) and Z ′

γ := Λ 1
2
,1 . (54)

Proposition 2.6 We have the following estimates.

• (i) For γ ∈ (1, 2), we have

lim
x→∞

xγ−1
P(Zγ ≥ x) = 2 lim

x→∞
xγ−1

P(Z ′
γ ≥ x) =

γ

2Γ(2− γ)
.

• (ii) For any γ ∈ (1, 2] we get

lim
x→0+

x−γ
P(Zγ ≤ x) =

2
γ

γ−1

(γ − 1)
γ

γ−1Γ(1 + γ)
.

Proof: First assume that γ ∈ (1, 2). When λ goes to 0, we have

E
[

e−λZγ
]

= 1−
γ

2
λγ−1 + o(λγ−1) and E

[

e−λZ′
γ

]

= 1−
γ

4
λγ−1 + o(λγ−1) .

A Tauberian theorem due to Bingham and Doney [6] (see also [7] Theorem 8.1.6, p. 333
) implies (i). Let us prove (ii). We have γ ∈ (1, 2]. When λ goes to ∞, we get

lim
λ→∞

λγE
[

e−λZγ
]

=
2

γ
γ−1

(γ − 1)
γ

γ−1

.

Then, (ii) is a consequence of a Tauberian theorem due to Feller ([19] Chapter XIII, § 5
; see also [7] Theorem 1.7.1’, p. 38). � Recall the definition of M∗

r (a) from (42). For any
0 ≤ r′ ≤ r ≤ a, we set

Qr′,r(a) =
∑

j∈I∗

1[a−r,a−r′ )(r
∗
j )

∫ ζ∗j

0

1{H∗j
s ≤r−a+r∗j }

. (55)

Arguing as in Lemma 2.3, we prove the following independence property.

Lemma 2.7 Let (rn, n ≥ 0) be a sequence such that 0 < rn+1 ≤ rn ≤ a and limn rn = 0.
Then, the random variables (Qrn+1,rn(a), n ≥ 0) are independent.

Remark 2.4 Note that the increments of r ∈ [0, a] 7→ M∗
r (a) are not independent.

However, for any 0 ≤ r′ ≤ r ≤ a, we have

M∗
r (a)−M∗

r′(a) = Qr′,r(a) +
∑

j∈I∗

1[a−r′ , a](r
∗
j )

∫ ζ∗j

0

1{r′−a+r∗j<H∗j
s ≤r−a+r∗j }

,

which first implies that M∗
r (a) ≥ Qr′,r(a). Moreover, we easily see that Qr′,r(a) is inde-

pendent of M∗
r′(a). �
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Recall the definition of κa(λ, µ) and recall it satisfies (24).

Lemma 2.8 For any a ∈ (0,∞) and for any r ∈ [0, a], we have

E
[

exp(−λQr′,r(a))
]

= 1−
κr−r′(λ, 0)

γ

λ
. (56)

Then,

(r − r′)−
γ

γ−1Qr′,r(a)
(law)
= M∗

1 (1) .

Proof: Recall that conditionally given U , N ∗ is distributed as a Poisson point process
with intensity dUt ⊗Nγ. Thus,

E
[

exp
(

− λQr′,r(a)
)

|U
]

= exp
(

−

∫

[a−r,a−r′ )

dUt κr−a+t(λ, 0)
)

.

Since U is a subordinator with Laplace exponent λ 7→ γλγ−1, we get

E
[

e−λQr′,r(a)
]

= exp
(

−γ

∫ a−r′

a−r

κr−a+t(λ, 0)
γ−1dt

)

= exp
(

−γ

∫ r−r′

0

κs(λ, 0)
γ−1ds

)

.

Set y = κs(λ, 0). Then, (24) entails

γ

∫ r−r′

0

κs(λ, 0)
γ−1ds =

∫ κr−r′(0,λ)

0

γ yγ−1

λ− yγ
dy = log λ− log

(

λ− κr−r′(λ, 0)
γ
)

,

which entails the first point of the lemma. Now observe that the scaling property (19)
combined with (26) entails that for any a, λ ≥ 0, and any c > 0, one has

κa(λ, 0) = c
1

γ−1κc a(c
− γ

γ−1λ, 0) ,

which easily implies the second point of the lemma. � Take r′ = 0 in the previous
lemma to get the following lemma.

Lemma 2.9 For any a ∈ (0,∞) and for any r ∈ [0, a], we have

E
[

exp(−λM∗
r (a))

]

= 1−
κr(λ, 0)

γ

λ
.

Then, r−γ/(γ−1)M∗
r (a) has the same law as M∗

1 (1).

To simplify notation, let us set Yγ :=M∗
1 (1).

Proposition 2.10 For any γ ∈ (1, 2), we have

lim
x→∞

xγ−1
P(Yγ ≥ x) =

1

Γ(2− γ)
.
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Proof: Recall (26), recall that
∫

ζ
0 1{Hs≤a}ds =

∫

a
0 Lb

ζ db and recall that N(Lb
ζ ) = 1, for

any b ∈ (0,∞) (see (27)). Thus,

lim
λ→0

κa(λ, 0)

λ
= N

(

∫ ζ

0

1{Hs≤a}ds
)

=

∫ a

0

N
(

Lb
ζ

)

db = a . (57)

Take a = 1 in (57) and use Lemma 2.9 to get

E
[

e−λYγ
]

= 1− λγ−1 + o(λγ−1)

when λ goes to 0. Since 0 < γ − 1 < 1, a Tauberian theorem due to Bingham and Doney
[6] entails the desired result (see also [7] Theorem 8.1.6, p. 333). �

3 Proofs of the main results.

3.1 Proof of Theorem 1.1.

Let us fix a ∈ (0,∞) and let g : (0, 1) → (0,∞) be such that lim0+ r−1/(γ−1)g(r) = 0. To
simplify notation we set h(r) = r−1/(γ−1)g(r). Lemma 2.5 and Proposition 2.6 (ii) imply
that for all sufficiently large n,

P(L∗
2−n(a) ≤ g(2−n)) = P(Zγ ≤ h(2−n)) ∼n→∞ Kγh(2

−n)γ , (58)

where Kγ is the limit on the right member of Proposition 2.6 (ii). We first prove Theorem
1.1 (i). So we assume

∑

n≥1

h(2−n)γ <∞ . (59)

Borel-Cantelli and (58) imply P(lim infn→∞L∗
2−n(a)/g(2−n) ≥ 1) = 1. This easily entails

P(lim infn→∞ L∗
2−n(a)/g(2−n) = ∞) = 1, since (59) is also satisfied by K.h for arbitrarily

large K. Then, (46) implies

Nγ

(
∫

T

ℓa(dσ)1{lim infn ℓa(B(σ,2−n))/g(2−n)<∞}

)

= 0 ,

which entails (9) in Theorem 1.1 (i).

Lemma 3.1 We assume that g is a regular gauge function that satisfies (59) and we set

E =
{

σ ∈ T (a) : lim inf
r→0

ℓa(B(σ, r))/g(r) < 1
}

.

Then, Nγ-a.e.Pg(E) ≤ 〈ℓa〉.
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Proof: Let us fix b ∈ (0, a). Recall that (gb
j , db

j), j ∈ Ib stand for the connected compo-
nents of the open set {t ≥ 0 : Ht > b} and recall that H b,j is the corresponding excursion
of H above b corresponding to (gb

j , db
j). We set T b

j = p([gb
j , db

j ]) and σb
j = p(gb

j ) = p(db
j).

As already mentioned (T b
j , d, σb

j ) is isometric to the tree coded by H b,j . The total height
of T b

j is then Γ(T b
j ) = sups≥0 H b,j

s . For any η > 0, we set

Db,η = {T b
j ; i ∈ Ib : Γ(T b

j ) > η} .

Note that Db,η is a finite set. Observe that ℓa(T b
j ) = La

db
j
− La

gb
j

is the local time at level

a− b of H b,j , or equivalently the total mass of the local time measure at level a− b of T b
j .

Then, the branching property entails for any x > 0,

N (b)
γ

(

∑

T∈Db,a−b

1{ℓa(T )≤x}

∣

∣

∣
Gb

)

= Lb
ζ Nγ

(

La−b
ζ ≤ x ; supH > a− b

)

.

Recall that La−b
ζ = 〈ℓa−b〉. Then, (28) and the scaling property (49) imply

Nγ

(

La−b
ζ ≤ x ; supH > a− b

)

=
(

(γ−1)(a−b)
)− 1

γ−1N (1)
γ

(

〈ℓ1〉 ≤ (a−b)−
1

γ−1x
)

.

Recall that Nγ-a.e.Lb
ζ = 〈ℓb〉 = 0, on {supH ≤ b}. Thus, (27) and (28) entail

Nγ

(

∑

T∈Db,a−b

1{ℓa(T )≤x}

)

=
(

(γ−1)(a−b)
)− 1

γ−1N (1)
γ

(

〈ℓ1〉 ≤ (a−b)−
1

γ−1x
)

. (60)

For any n ∈ N such that 2−n < a, we next set

Vn =
∑

T∈Da−2−n,2−n

g(2.2−n)1{ℓa(T )≤g(2.2−n)} .

We apply (60) with b = a− 2−n and η = 2−n, and we use Lemma 2.2 to get

N(Vn) = (γ − 1)−
1

γ−12
n

γ−1 g(2.2−n)N (1)
γ

(

〈ℓ1〉 ≤ 2−
1

γ−1h(2.2−n)
)

≤ K ′
γ h(2.2

−n)γ,

where K ′
γ is a positive constant that only depends on γ. Therefore, (59) entails

Nγ −a.e. lim
n→∞

∑

p≥n

Vp = 0 . (61)

Let ε ∈ (0, a/2). We assume that T (a) 6= ∅. Let (B̄(σm, rm) ; m ≥ 1) be any ε-closed
packing of E. Namely, the closed balls B̄(σm, rm) are pairwise disjoints, σm ∈ E ⊂ T (a)
and rm ≤ ε, for any m ≥ 1. Let us fix m ≥ 1. There exists n (that depends on m)
such that 2−n < rm ≤ 2.2−n. Now observe that T (a) is the union of the sets T ∩ T (a)
where T ranges in Da−2−n−1,2−n−1 . Consequently, there exists T ∗ ∈ Da−2−n−1,2−n−1 such
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that σm ∈ T ∗ ∩ T (a). Denote by σ∗, the lowest point in T ∗. Namely σ∗ is the point of
T ∗ that is the closest to root and σ∗ ∈ T (a − 2−n−1). It is easy to prove that for any
σ ∈ T ∗ ∩ T (a), we have

d(σ, σm) ≤ d(σ, σ∗) + d(σ, σ∗) = 2.2−n−1 = 2−n < rm .

Thus T ∗∩T (a) ⊂ T (a)∩ B̄(σm, rm). Thus, ℓa(T ∗) ≤ ℓa(B̄(σm, rm)). Since this holds true
for any m ≥ 1, we get

∑

m≥1

g(rm)1{ℓa(B(σm ,rm))<g(rm)} ≤
∑

n:2−n<ε

Vn+1. (62)

Now observe that

∑

m≥1

g(rm)1{ℓa(B(σm,rm))≥g(rm)} ≤
∑

m≥1

ℓa(B(σm, rm)) ≤ 〈ℓa〉.

This inequality combined with (62) implies

∑

m≥1

g(rm) ≤ 〈ℓa〉+
∑

n:2−n<ε

Vn+1 .

Since, this holds true for any ε-closed packing (B̄(σm, rm) ; m ≥ 1) of E, (61) entails
P∗

g (E) ≤ 〈ℓa〉, Nγ-a.e. where P∗
g stands for the g-packing pre-measure, which completes

the proof of the lemma since Pg(E) ≤ P∗
g (E), by definition of Pg. � Lemma 2.1

(ii) implies that Pg(T (a)\E) ≤ 〈ℓa〉. This inequality combined with Lemma 3.1 entails
Nγ-a.e.Pg(T (a)) = Pg(E) +Pg(T (a)\E) ≤ 2〈ℓa〉. This proves that for any regular gauge
function g that satisfies (59), we Nγ-a.e. have Pg(T (a)) ≤ 2〈ℓa〉. Thus, for any constant
K > 0, we have PKg(T (a)) ≤ 2〈ℓa〉. Now observe that PKg(T (a)) = KPg(T (a)), which
easily implies Pg(T (a)) = 0, Nγ-a.e. This completes the proof of Theorem 1.1 (i).

Let us prove Theorem 1.1 (ii). We now assume

∑

n≥1

h(2−n)γ = ∞ . (63)

For any n ≥ 1, set Sn = ε1+ . . .+εn, where εn = 1{L∗
2−n (a) ≤ g(2−n)}. Estimates (58) implies

that

E [Sn] ∼n→∞ Kγ

n
∑

l=1

h
(

2−l
)γ

. (64)

Next observe that
E
[

S2
n

]

= E[Sn] + 2
∑

1≤k<l≤n

E [εkεl] .
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Fix 1 ≤ k < l ≤ n. As noted in Remark 2.3, Λ2−l,2−k(a) ≤ L∗
2−k(a). Thus,

{L∗
2−k(a) ≤ g(2−k)} ∩ {L∗

2−l(a) ≤ g(2−l)}

⊂ {Λ2−l,2−k(a) ≤ g(2−k)} ∩ {L∗
2−l(a) ≤ g(2−l)}.

Remark 2.3 also asserts that L∗
2−l(a) is independent of Λ2−l,2−k(a). Thus,

E [εkεl] ≤ P
(

Λ2−l,2−k(a) ≤ g(2−k)
)

E [εl]

≤ P

(

2
k

γ−1Λ2−l,2−k(a) ≤ h(2−k)
)

E [εl] . (65)

We give an upper bound of the last probability thanks to the Laplace transform of

2
k

γ−1Λ2−l,2−k(a) that is explicitly given in (53) in Lemma 2.4:

E
[

exp(−λ2
k

γ−1Λ2−l,2−k(a))
]

=

(

(γ−1)
2

2−(l−k)λγ−1 + 1
(γ−1)
2
λγ−1 + 1

)
γ

γ−1

=
(

2−(l−k) +
1− 2−(l−k)

γ−1
2
λγ−1 + 1

)
γ

γ−1

≤ 2
1

γ−1

(

2−
γ

γ−1
(l−k) +

( 1− 2−(l−k)

γ−1
2
λγ−1 + 1

)
γ

γ−1
)

,

by an elementary convex inequality. Set C1 = 21/(γ−1) (2/(γ − 1))γ/(γ−1) . The previous
inequality easily entails the following

E
[

exp(−λ2
k

γ−1Λ2−l,2−k(a))
]

≤ C1

(

2−
γ

γ−1
(l−k) + λ−γ

)

.

We now use Markov inequality to get

P

(

2
k

γ−1Λ2−l,2−k(a) ≤ h(2−k)
)

≤ eE
[

exp
(

− 2
k

γ−1Λ2−l,2−k(a)/h(2−k)
)

]

≤ eC1

(

2−
γ

γ−1
(l−k) + h(2−k)γ

)

. (66)

Now, (58) implies that there exists C2 ∈ (0,∞) that only depends on γ and h such that
h(2−k)γ ≤ C2E[εk], for any k ≥ 1. Thus, (65) and (66) imply there exists C3 ∈ (0,∞)
(that only depends on h and γ) such that

E [εkεl] ≤ C3

(

2−
γ

γ−1
(l−k)

E[εl] + E[εk]E[εl]
)

,

which easily implies

E
[

S2
n

]

≤

(

1 +
C3

1− 2−
γ

γ−1

)

E [Sn] + C3. (E [Sn])
2 .
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By (64) and (63),we get

lim sup
n→∞

E [S2
n]

(E [Sn])
2 ≤ C3

and Kochen-Stone’s Lemma implies P(
∑

n≥1 εn = ∞) ≥ 1/C3 > 0. As observed in
Remark 2.3, r → L∗

r(a) has independent increments. Thus, Kolmogorov’s 0-1 law applies
and we get P(

∑

n≥1 εn = ∞) = 1. This entails P(lim infn L
∗
2−n(a)/g(2−n) ≤ 1) = 1.

Observe that (63) is also satisfied by c.h for arbitrarily small c > 0. This easily implies
P(lim infn L

∗
2−n(a)/g(2−n) = 0) = 1 and (46) entails

Nγ

(
∫

T

ℓa(dσ)1{lim infn ℓa(B(σ,2−n))/g(2−n)>0}

)

= 0 .

This proves (10) in Theorem 1.1 (ii). Furthermore, if g is a regular gauge function,
then, (10) and Lemma 2.1 (i) entail that Nγ-a.e.Pg(T (a) ) = ∞, on {T (a) 6= ∅}, which
completes the proof of Theorem 1.1. �

3.2 Proof of Proposition 1.2.

Fix a > 0 and let g be as in Proposition 1.2. Namely g : (0, 1) → (0,∞) is such that
lim0+ r−1/(γ−1)g(r) = ∞. To simplify notation we set h(r) = r−1/(γ−1)g(r). Although
Proposition 1.2 (i) is already proved in [13] we provide a brief proof of it: We assume that

∑

n≥1

h(2−n)−(γ−1) <∞ . (67)

The scaling property stated in Lemma 2.5 and Proposition 2.6 (i) imply that for all
sufficiently large n,

P(L∗
2−n(a) ≥ g(2−n)) = P(Zγ ≥ h(2−n)) ∼n→∞

γ

2Γ(2− γ)
h(2−n)−(γ−1) .

Borel-Cantelli entails P(lim supn→∞ L∗
2−n(a)/g(2−n) ≤ 1). Since (67) is satisfied by K.h

for arbitrarily large K, we easily get P(lim supn→∞ L∗
2−n(a)/g(2−n) = 0) = 1 and (46)

entails

Nγ

(
∫

T

ℓa(dσ)1{lim supn ℓa(B(σ,2−n))/g(2−n)>0}

)

= 0 .

This proves (13) in Proposition 1.2 (i). Furthermore, if g is a regular gauge function,
then, (13) and Lemma 2.1 (iii) entail that Nγ-a.e.Hg(T (a) ) = ∞, on {T (a) 6= ∅}, which
completes the proof of Proposition 1.2 (i).

Let us prove (14) in Proposition 1.2 (ii). We now assume

∑

n≥1

h(2−n)−(γ−1) = ∞ . (68)
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For any n ≥ 1, set εn = 1{Λ2−n−1,2−n (a) ≥ g(2−n)}. The scaling property in Lemma 2.4 and

Proposition 2.6 (i) imply

E[εn] ∼n→∞
γ

4Γ(2− γ)
h(2−n)−(γ−1) .

Therefore
∑

n≥1E[εn] = ∞. The independence property stated in Lemma 2.3 shows
that the εn’s are independent. The converse of Borel-Cantelli implies P(

∑

n≥1 εn =
∞) = 1. As noticed in Remark 2.3, we have εn ≤ 1{L∗

2−n (a)≥g(2−n)}. Consequently,

P(lim supn→∞ L∗
2−n(a)/g(2−n) ≥ 1) = 1. Since (68) is satisfies by c.h for arbitrarily small

c > 0, we easily get P(lim supn→∞ L∗
2−n(a)/g(2−n) = ∞) = 1 and (46) entails

Nγ

(
∫

T

ℓa(dσ)1{lim supn ℓa(B(σ,2−n))/g(2−n)<∞}

)

= 0 ,

which proves (14) in Proposition 1.2 (ii). �

3.3 Proof of Proposition 1.4.

Let g be as in Proposition 1.4. Namely lim0+ r−γ/(γ−1)g(r) = ∞. To simplify notation we
set h(r) = r−γ/(γ−1)g(r). Although Proposition 1.4 (i) is already proved in [13] we provide
a brief proof of it. We assume that

∑

n≥1

h(2−n)−(γ−1) <∞ . (69)

Let us fix a > 0. The scaling property stated in Lemma 2.9 and Proposition 2.10 (i)
imply that

P(M∗
2−n(a) ≥ g(2−n)) = P(Yγ ≥ h(2−n)) ∼n→∞

h(2−n)−(γ−1)

Γ(2− γ)
.

Borel-Cantelli implies P(lim supnM
∗
2−n(a)/g(2−n)≤1)=1. Since (69) is satisfied by K.h

for arbitrarily large K, we easily get P(lim supn→∞M∗
2−n(a)/g(2−n) = 0) = 1. By (43),

for any a > 0, we get

Nγ

(
∫

T

ℓa(dσ)1{lim supn m(B(σ,2−n))/g(2−n)>0}

)

= 0 .

Since m =
∫∞

0
ℓa, this entails (16) in Proposition 1.4. Furthermore, if g is a regular

gauge function, then, (16) and Lemma 2.1 (iii) imply that Hg(T ) = ∞, Nγ-a.e. , which
completes the proof of Proposition 1.4 (i).

Let us prove (17) in Proposition 1.4 (ii). We assume
∑

n≥1

h(2−n)−(γ−1) = ∞ . (70)

28



For any n ≥ 1, we set εn = 1{Q2−n−1,2−n (a) ≥ g(2−n)}. The scaling property stated in Lemma

2.8 and Proposition 2.10 (i) entail

E[εn] = P
(

Yγ ≥ 2
−γ
γ−1h(2−n)

)

∼n→∞
2γh(2−n)−(γ−1)

Γ(2− γ)
,

Thus,
∑

n≥1 E[εn] = ∞. The independence property of Lemma 2.7 (i) implies that
the εn’s are independent. Thus, P(

∑

n≥1 εn = ∞) = 1, by the converse of Borel-
Cantelli. Then, Remark 2.4 entails εn ≤ 1{M∗

2−n (a)≥g(2−n)}, for any n ≥ 1. Thus,

P(lim supn→∞M∗
2−n(a)/g(2−n) ≥ 1) = 1. Since (70) is satisfied by c.h for arbitrarily

small c > 0, we easily get P(lim supn→∞M∗
2−n(a)/g(2−n) = ∞) = 1. By (43), for any

a > 0, we get

Nγ

(
∫

T

ℓa(dσ)1{lim supn m(B(σ,2−n))/g(2−n)<∞}

)

= 0 .

Since m =
∫∞

0
ℓa, this entails (17) in Proposition 1.4.

3.4 Proof of Theorem 1.3 and of Theorem 1.5.

We fix γ ∈ (1, 2) and we consider the γ-stable tree (T , d, ρ) coded by the height process
(Ht, t ≥ 0) under its excursion measure Nγ . Recall that p stands for the canonical
projection from [0, ζ ] onto T = [0, ζ ]/ ∼. Recall that ρ = p(0) stands for the root of
T . We extend p on [0,∞) by setting p(t) = ρ, for any t ≥ ζ . Let 0 ≤ s ≤ t and set
Ts,t = p([s, t]), equipped with the distance d on T . We set ρs,t = p(r0) where r0 ∈ [s, t] is
such that Hr0 = infr∈[s,t]Hr. Observe that (Ts,t, d, ρs,t) is a compact rooted real tree that
is isometric to the compact real tree coded by the process Hs,t := (H(s+r)∧t, r ≥ 0).

Let g : (0, 1) → (0,∞) be regular gauge function. We denote by Hg the g-Hausdorff
measure on (T , d). Recall that T is compact and note that any subset of T is contained
in a closed ball with the same diameter. In the definition of Hg(Ts,t), we may restrict
our attention to finite coverings with closed balls with center of the form p(r), with
r ∈ Q∩ [s, t] and with rational radius. This entails that Hg(Ts,t) is a measurable function
of Hs,t. Similarly, for any a ≥ 0, Hg(T (a) ∩ Ts,t) is a measurable function of Hs,t.

Let us fix a > 0. Recall the definition of H̃a that is the height process below a and
recall that Ga is the sigma-field generated by H̃a augmented with the Nγ-negligible sets.
We denote by Ga− the sigma-field generated by

⋃

b<a Gb. It is easy to observe that Nγ-
a.e. H̃a is the limit in D([0,∞),R) of H̃b when b goes to a. Then, Ga− = Ga. Next observe
that the rooted real tree coded by H̃a is isometric to B̄(ρ, a) = {σ ∈ T : d(ρ, σ) ≤ a}.
Thus, Hg(B̄(ρ, a) ) and Hg(T (a) ) are Ga-measurable [0,∞]-valued random variables.

Proof of Theorem 1.3. Let g(r) = rqs(r) where q is nonnegative and where s is
slowly varying at 0. Recall that we furthermore assume that g is a regular gauge function.
Recall that Nγ-a.e. on {T (a) 6= ∅}, the Hausdorff dimension of T (a) is 1/(γ − 1). Thus,
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if q > 1/(γ − 1), then Hg(T (a) ) = 0, Nγ-a.e. and if q < 1/(γ − 1), then Hg(T (a) ) = ∞,
Nγ-a.e. on {T (a) 6= ∅}. We then restrict our attention to the case q = 1/(γ − 1).

The general idea of the proof of Theorem 1.3 is the following: if for a certain a ∈ (0,∞),
we have Nγ( 0 < Hg(T (a)) < ∞) > 0, then we first prove that 0 < Hg(T (a)) < ∞, Nγ-
a.e. on {T (a) 6= ∅}. We next observe that Hg(· ∩ {T (a) 6= ∅}) behaves like ℓa with
respect to the scaling property and the branching property and we prove it entails that
Hg(· ∩ {T (a) 6= ∅}) = c0ℓ

a, where c0 ∈ (0,∞). Finally, we get a contradiction thanks to
the test stated in Proposition 1.2.

The proof is in several steps. We first discuss how a 7→ Hg(T (a)) ∈ [0,∞] behaves
with respect to the branching property. We agree on the convention exp(−∞) = 0. Then,
for any a, λ ∈ (0,∞), it makes sense to set

ũ(a, λ) = Nγ

(

1− e−λHg(T (a) )
)

,

Recall from (28) the definition of v(a) and observe that ũ(a, λ) ≤ v(a) < ∞. Let us fix
b ∈ (0, a). Recall that (gb

j , db
j), i ∈ Ib stands for the connected components of the open

set {t ≥ 0 : Ht > b} and recall that for any j ∈ Ib, we denote by H b,j the corresponding
excursion of H above b. We also set T b

j = p([gb
j , db

j ]) and σb
j = p(gb

j ). Then, the subtree
(T b

j , d, σb
j ) is isometric to the rooted compact real tree coded by the excursionH b,j . For any

n ≥ 1, we set Ln =
∑

j∈Ib n∧Hg(T b
j (a−b) ), where T b

j (a−b) := {σ ∈ T b
j : d(σb

j , σ) = a−b}.
Note that T b

j (a − b) is the (a − b)-level set of T b
j . Since Hg(T b

j (a − b) ) is a measurable
function of H b,j , the branching property (36) applies and for any λ ∈ (0,∞), we N (b)

γ -
a.s. get

N (b)
γ

(

e−λLn
∣

∣Gb

)

= e−Lb
ζ ũn(a−b,λ) ,

where ũn(a− b, λ) = Nγ(1 − exp(−λn ∧ Hg(T (a− b) )) ). By monotone convergence, we
get limn ũn(a − b, λ) = ũ(a − b, λ). Then, observe that limn ↑ Ln = Hg(T (a) ). Thus,
the conditional dominated convergence theorem implies that for any λ ∈ (0,∞), we N (b)

γ -
a.s. have

N (b)
γ

(

e−λHg(T (a) )
∣

∣Gb

)

= e−Lb
ζ ũ(a−b,λ) , (71)

Since Lb
ζ = 0, Nγ-a.e. on {supH ≤ b}, this entails

ũ(a, λ) = Nγ

(

1− e−Lb
ζ ũ(a−b,λ)

)

= u(b, ũ(a− b, λ) ) . (72)

Note that Theorem 1.3 is implied by the two following claims.

(Claim 1) If there exists a0 ∈ (0,∞) such that Nγ(Hg(T (a0) ) = ∞) > 0, then for any
a ∈ (0,∞), Nγ-a.e.Hg(T (a)) = ∞, on {T (a) 6= ∅}.

(Claim 2)For any a ∈ (0,∞), Nγ(0 < Hg(T (a)) <∞) = 0.
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We first prove (Claim 1). To that end, observe that ũ(b, 0+) = limλ→0 ũ(b, λ) = Nγ(H(T (b)) =
∞) for any b ∈ (0,∞). Then, (72) entails

ũ(a, 0+) = u(a− b, ũ(b, 0+) ) , a > b > 0 . (73)

Let us now recall the scaling property of T : Let c ∈ (0,∞). The "law" of (T , cd, ρ) under
Nγ is the "law" of (T , d, ρ) under c1/(γ−1)Nγ. We next denote by Hg,cd the g-Hausdorff
measure on (T , cd, ρ) and we set gc(r) = g(cr), for any r ∈ (0, 1). Then, for any b > 0,
we easily get

Hg,c d

(

{σ ∈ T : c d(ρ, σ) = b}
)

= Hgc

(

{σ ∈ T : d(ρ, σ) = b/c}
)

= c
1

γ−1Hg

(

T (b/c)
)

,

since g is regularly varying at 0 with exponent 1/(γ − 1). The scaling property for T
implies that the law of c1/(γ−1)Hg(T (b/c)) under Nγ is the same as the law of Hg(T (b))
under c1/(γ−1)Nγ . Thus ũ(b, 0+) = b−1/(γ−1) ũ(1, 0+), for any b > 0. If there exists a0 > 0
such that Nγ(Hg(T (a0)) = ∞) > 0, then ũ(1, 0+) > 0, limb→0 ũ(b, 0+) = ∞. Recall that

v(a) = Nγ(supH > a) = Nγ(L
a
ζ > 0) = Nγ(T (a) 6= ∅) = lim

µ→∞
u(a, µ) ,

where u is given by (1). Then, (73) and the previous arguments easily imply that for any
a ∈ (0,∞), ũ(a, 0+) = limb→0 u(a − b, ũ(b, 0+) ) = v(a). Namely, Nγ(H(T (a)) = ∞) =
Nγ(T (a) 6= ∅). Since {H(T (a)) = ∞} ⊂ {T (a) 6= ∅}, it implies that Nγ-a.e.Hg(T (a) ) =
∞, on {T (a) 6= ∅}, which proves the first claim.

To prove (Claim 2), we argue by contradiction and we suppose that there exists a0 ∈
(0,∞) such that

Nγ(0 < Hg(T (a0) ) <∞) > 0 . (74)

The previous arguments show that ũ(b, 0+) = Nγ(H(T (b) ) = ∞) = 0, for any b ∈ (0,∞).
The scaling property discussed above entails

ũ(b, λ) = c−
1

γ−1 ũ
(

b/c , c
1

γ−1λ
)

, b, λ, c > 0 . (75)

We first claim that for any a ∈ (0,∞),

Nγ(H(T (a) ) > 0) = Nγ(supH > a) = v(a). (76)

Indeed, observe that ṽ(b) := limλ→∞ ↑ ũ(b, λ) = Nγ(H(T (b) ) > 0). Then, (75) implies
ṽ(b) = b−1/(γ−1) ṽ(1). Assumption (74) entails that 0 < ũ(a0, λ) ≤ ṽ(a0). Thus, we get
ṽ(1) > 0, which implies limb→0 ṽ(b) = ∞. Thanks to (72), we get ṽ(a) = u(a − b, ṽ(b) )
and ṽ(a) = limb→0 u(a− b, ṽ(b) ) = v(a), which is (76).

Recall that for any fixed λ ∈ (0,∞), b 7→ u(b, λ) is decreasing. Then, (72) implies
that ũ(a, λ) ≤ ũ(b, λ), for any a > b > 0, and for any λ > 0. Thus, it makes sense
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to set φ(λ) = limb↓0 ↑ ũ(b, λ) ∈ (0,∞]. Then (72) entails ũ(a, λ) = u(a, φ(λ)), for
any a, λ > 0, with the convention: u(a,∞) = v(a). Since Nγ(Hg(T (a)) = ∞) = 0,
(76) and the definition of ũ imply ũ(a, λ) < v(a). Consequently, φ(λ) ∈ (0,∞), for
any λ > 0. Next, observe that u satisfies the same scaling property (75) as ũ. Therefore,
c1/(γ−1)φ(λ) = φ(c1/(γ−1)λ), for any c, λ > 0. Namely, φ(λ) = c0λ, where c0 := φ(1) ∈ (0,∞)
and we have proved that

ũ(b, λ) = u(b, c0λ) , λ, b > 0 . (77)

We next prove that for any a > b > 0, and for any λ ≥ 0,

N (a)
γ −a.s. N (a)

γ

(

e−λHg(T (a) )
∣

∣Gb

)

= N (a)
γ

(

e−λc0La
ζ

∣

∣Gb

)

. (78)

Proof of (78): by the branching property, we easily get N (b)
γ

(

e−λc0La
ζ

∣

∣Gb

)

= e−Lb
ζu(a−b,c0λ).

Therefore,
N (b)

γ

(

e−λHg(T (a) )
∣

∣Gb

)

= N (b)
γ

(

e−λc0La
ζ

∣

∣Gb

)

.

Then, we get N (b)
γ (1{Hg(T (a) )=0}|Gb) = N (b)

γ (1{La
ζ=0}|Gb) = e−Lb

ζv(a−b), by letting λ go to ∞.

Thus, N (b)
γ -a.s.

N (b)
γ

(

1{Hg(T (a) )>0}e
−λHg(T (a) )

∣

∣Gb

)

= N (b)
γ

(

1{La
ζ>0}e

−λc0La
ζ

∣

∣Gb

)

.

By (28) and (76), we have 1{La
ζ>0} = 1{Hg(T (a) )>0} = 1{supH>a}, Nγ-a.e. Thus, N (b)

γ -a.s. we
get

N (b)
γ

(

1{supH>a}e
−λHg(T (a) )

∣

∣Gb

)

= N (b)
γ

(

1{supH>a}e
−λc0La

ζ

∣

∣Gb

)

.

Recall that N (b)
γ = Nγ(· ∩ {supH > b})/v(b) and note that {supH > a} ⊂ {supH > b}.

Thus, for any positive Gb-measurable random variable Y , we get

Nγ

(

1{supH>a}e
−λHg(T (a) )Y

)

= Nγ

(

1{supH>a}e
−λc0La

ζY
)

,

which easily entails (78). �

Recall that La
ζ and Hg(T (a) ) are Ga-measurable and recall that Ga− = Ga. By letting b

go to a in (78), we get Hg(T (a) ) = c0La
ζ , N

(a)
γ -a.s. which easily entails Hg(T (a) ) = c0La

ζ ,
Nγ-a.e. Recall that ℓa(T (a) ) = La

ζ . Thus, we have proved:

∀a ∈ (0,∞) , Nγ −a.e. Hg(T (a) ) = c0ℓ
a(T (a) ) . (79)

We now prove the following.

Nγ −a.e. Hg( · ∩ T (a) ) = c0ℓ
a . (80)

Proof of (80): let a > b > 0. The branching property and (79) easily imply that Nγ-
a.e. for any j ∈ Ib , we have Hg(T b

j (a− b) ) = c0ℓ
a(T b

j (a− b) ). For any σ ∈ T (a) and any
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r ≥ 0, we set B̄a(σ, r) = {σ′ ∈ T (a) : d(σ, σ′) ≤ r}. Note that B̄a(σ, r) is the closed ball
in (T (a), d) with radius r and center σ.

Let us fix σ ∈ T (a) and let us denote by σ̃ the unique point in [[ρ, σ]] such that
d(σ, σ̃) = a − b. Observe that B̄a(σ, 2(a − b)) is the union of the T b

j (a − b) such that
σb

j = σ̃. Since the T b
j (a− b)s are pairwise disjoints, we get

∀a > b > 0, Nγ −a.e. ∀σ ∈ T (a), H(B̄a(σ, 2(a−b)) ) = c0ℓ
a(B̄a(σ, 2(a−b)) ).

Consequently, there exists a Borel subset A ⊂ D([0,∞),R) whose complementary set is
Nγ-negligible and such that on A, one has Hg(B̄a(σ, r)) = c0ℓ

a(B̄a(σ, r)) < ∞, for any
σ ∈ T (a) and any r ∈ Q+, which easily entails (80). �

We have proved that (74) implies that there exists c0 ∈ (0,∞) such that (80) holds
true. Let us furthermore assume that

∑

n≥1

2−n

g(2−n)γ−1
<∞ . (81)

Then, Proposition 1.2 (i) implies that Hg(T (a)) = ∞, Nγ-a.e. on {T (a) 6= ∅}, which
contradict (80) since Nγ(ℓ

a(T (a)) = ∞) = 0. Consequently (81) fails and Proposition
1.2 (ii) entails that ℓa(E) = ℓa(T (a)), where E is a Borel subset of T (a) such that
lim supn ℓ

a(B(σ, 2−n))/g(2−n) = ∞ for any σ ∈ E. By the comparison lemma for Hausdorf
measures (Lemma 2.1 (iv)), we get Hg(E) = 0, which contradicts (80). This implies that
(74) is false, which proves (Claim 2). This completes the proof of Theorem 1.3. �

Proof of Theorem 1.5. Let g(r) = rqs(r) where q is nonnegative and s is slowly
varying at 0. Recall that we furthermore assume that g is a regular gauge function. Recall
that Nγ-a.e. the Hausdorff dimension of T is γ/(γ − 1). Thus, if q > γ/(γ − 1), then
Hg(T ) = 0, Nγ-a.e. and if q < γ/(γ − 1), then Hg(T ) = ∞, Nγ-a.e. We next restrict our
attention to the case q = γ/(γ − 1).

The general idea of the proof of Theorem 1.5 is the following: if Nγ( 0 < Hg(T ) <
∞) > 0, then we first prove that 0 < Hg(T ) < ∞, Nγ-a.e. We next observe that Hg

behaves like m with respect to the scaling property and the branching property and we
prove it entails that Hg = c0m, where c0 ∈ (0,∞). Finally, we get a contradiction thanks
to the test stated in Proposition 1.4.

We first need to state two preliminary results. We agree on the convention exp(−∞) =
0 and for any a, λ > 0 and any µ ≥ 0, we set

κ̃a(λ, µ) = Nγ

(

1− e−λHg(B̄(ρ,a) )−µLa
ζ
)

∈ [0,∞] .

Let us fix b ∈ (0, a). Recall that (gb
j , db

j), i ∈ Ib stands for the connected components
of the open set {t ≥ 0 : Ht > b} and recall that for any j ∈ Ib, we denote by H b,j the
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corresponding excursion of H above b. We also set T b
j = p([gb

j , db
j ]) and σb

j = p(gb
j ). Then,

the subtree (T b
j , d, σb

j ) is isometric to the rooted compact real tree coded by the excursion
H b,j . We set T b

j (· ≤ a − b) = {σ ∈ T b
j : d(σb

j , σ) ≤ a − b} that is the closed ball of
(T b

j , d, σb
j ) with center σb

j and radius a− b. For any integer n ≥ 1, for any λ ∈ (0,∞) and
for any µ ∈ [0,∞), we then set

Kn = n ∧ Hg(B̄(ρ, b) ) + λ
∑

j∈Ib

1{supHb,j>1/n} n ∧Hg(T
b
j (· ≤ a− b) )

+ µ
∑

j∈Ib

1{supHb,j>1/n} L
a−b
ζj

(j) .

Here La−b
ζj

(j) stands for the local time of Hj,b at level a−b. Since H is continuous, the sum

only contains a finite number of non-zero terms. Recall that since Hg(T b
j (· ≤ a− b)) is a

measurable function of H b,j , the branching property (36) implies that for any λ ∈ (0,∞),

N (b)
γ −a.e. N (b)

γ

(

e−Kn
∣

∣Gb

)

= e−λ. n∧Hg(B̄(ρ,b) )−Lb
ζ κ̃

(n)
a−b(λ,µ) ,

where
κ̃
(n)
a−b(λ, 0) = Nγ

[

1{supH>1/n}(1− e−λ. n∧Hg(B̄(ρ,a−b))−µLa−b
ζ
)]

.

Monotone convergence implies limn ↑ κ̃(n)

a−b(λ, 0) = κ̃a−b(λ, 0). Then note that Nγ-a.e.

lim
n

↑ Kn = λHg(B̄(ρ, a) ) + µLa
ζ .

The conditional dominated convergence theorem implies that for any λ ∈ (0,∞), any
µ ∈ [0,∞) and any a > b > 0, we N (b)

γ -a.s. have

N (b)
γ

(

1{Hg(B̄(ρ,a))<∞}e
−λHg(B̄(ρ,a))−µLa

ζ

∣

∣Gb

)

=

1{Hg(B̄(ρ,b))<∞}e
−λHg(B̄(ρ,b))−Lb

ζ κ̃a−b(λ,µ). (82)

Arguing as in the proof of (75), the scaling property of T and the fact that g is regularly
varying at 0 with exponent γ/(γ − 1) imply that for any c ∈ (0,∞), the joint law of
cγ/(γ−1)Hg(B̄(ρ, b/c)) and c1/(γ−1)Lb/c

ζ under Nγ is the same as the joint law of Hg(B̄(ρ, b))
and Lb

ζ under c1/(γ−1)Nγ. This easily entails

κ̃b(λ, µ) = c−
1

γ−1 κ̃b/c
(

c
γ

γ−1λ, c
1

γ−1µ
)

, b, λ, c, µ > 0 . (83)

Now observe that Theorem 1.5 is implied by the two following claims.

(Claim 1) If Nγ(Hg(T ) <∞) > 0, then Nγ(Hg(T ) = ∞) = 0.

(Claim 2)Nγ(0 < Hg(T ) <∞) = 0.
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We first prove (Claim 1). Let us suppose that Nγ(Hg(T ) < ∞) > 0. Then, there exists
a0 > b0 > 0 such that Nγ(Hg(B̄(ρ, a0) < ∞ ; supH > b0 ) > 0. Next, observe that
the left member in (82) with a = a0 and b = b0 is strictly positive, which entails that
κ̃a0−b0(λ, 0) <∞, for any λ ∈ (0,∞), since we N (b)

γ -a.s. have Lb
ζ > 0. Therefore, we have

Nγ(Hg(B̄(ρ, a0 − b0)) = ∞) ≤ κ̃a0−b0 (λ, 0) <∞ , λ ∈ (0,∞) .

The scaling property easily entails that

Nγ(Hg(B̄(ρ, b)) = ∞) = b−1/(γ−1)Nγ(Hg(B̄(ρ, 1)) = ∞) .

Since b 7→ Nγ(Hg(B̄(ρ, b)) = ∞) is obviously non-decreasing and finite at b = a0 − b0, we
get Nγ(Hg(B̄(ρ, b)) = ∞) = 0 for any b > 0. Consequently, Nγ(Hg(T ) = ∞) = 0, since
T is bounded. This completes the proof of the first claim.

We now prove (Claim 2). We argue by contradiction, so we suppose that

Nγ(0 < Hg(T ) <∞) > 0 . (84)

First, observe that (Claim 1) entails that Nγ(Hg(B̄(ρ, a)) = ∞) = 0 for any a > 0. Since
T is bounded, we get

Nγ
−a.e. Hg(T ) <∞ . (85)

Then observe that for any b ∈ (0,∞) the left member in (82) is strictly positive for any
λ > 0. This entails κ̃a−b(λ, 0) < ∞ for any a > b > 0, λ > 0, since we N (b)

γ -a.s. have
Lb

ζ > 0, as already mentionned. More simply, we have proved

κ̃a(λ, 0) <∞ , a, λ ∈ (0,∞) .

Let µ > 0. Observe that

0 ≤ κ̃a(λ, µ)− κ̃a(λ, 0) ≤ µNγ(L
a
ζ ) = µ . (86)

This implies that κ̃a(λ, µ) < ∞. Moreover (84) implies that κ̃a(λ, µ) > 0. Thus, we have
proved that

κ̃a(λ, µ) ∈ (0,∞) , a, λ > 0 , µ ≥ 0 .

Since Nγ(Lb
ζ 6= 0) = Nγ(supH > b), (82) easily entails

κ̃a(λ, µ) = Nγ

(

1− e−λHg(B̄(ρ,b) )−Lb
ζ κ̃a−b(λ,µ)

)

= κ̃b(λ, κ̃a−b(λ, µ) ). (87)

We next prove that for any λ ∈ (0,∞), there exists φ(λ) ∈ (0,∞), such that for any
a > 0, we have

κ̃a(λ, 0) = Nγ

(

1− e−λHg(B̄(ρ,a) )
)

= φ(λ)

∫ a

0

Nγ

(

e−λHg(B̄(ρ,b) )Lb
ζ

)

db. (88)
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Proof of (88): we first set U(λ, a) = Nγ

(

e−λHg(B̄(ρ,a) )La
ζ

)

, for any a, λ ∈ (0,∞). Observe
that (82), (85) and (86) imply for any a > b > 0, and any µ ∈ (0,∞)

N (b)
γ

(

e−λHg(B̄(ρ,a)) 1

µ

(

1− e−µLa
ζ
)
∣

∣Gb

)

=

e−λHg(B̄(ρ,b))−Lb
ζ κ̃a−b(λ,0) 1

µ

(

1− e−Lb
ζ(κ̃a−b(λ,µ)−κ̃a−b(λ,0) )

)

≤ e−λHg(B̄(ρ,b))Lb
ζ

1

µ
(κ̃a−b(λ, µ)− κ̃a−b(λ, 0) )

≤ e−λHg(B̄(ρ,b))Lb
ζ .

Observe that the following limit is non-decreasing: limµ↓0 ↑ 1
µ

(

1 − e−µLa
ζ
)

= La
ζ . Condi-

tional monotone convergence entails

N (b)
γ

(

e−λHg(B̄(ρ,a))La
ζ

∣

∣Gb

)

≤ e−λHg(B̄(ρ,b))Lb
ζ .

We integrate this inequality with respect to N (b)
γ . Since {La

ζ > 0} ⊂ {Lb
ζ > 0}, we easily

get for any a > b > 0, and any λ ∈ (0,∞),

U(λ, a) = Nγ

(

e−λHg(B̄(ρ,a))La
ζ

)

≤ Nγ

(

e−λHg(B̄(ρ,b))Lb
ζ

)

= U(λ, b), (89)

Next, let b, h ∈ (0,∞) and note that Hg(B̄(ρ, b+ h) )−Hg(B̄(ρ, b) ) = 0, on the event
{T (b) = ∅}. Since Nγ(T (b) 6= ∅) = Nγ(supH > b), (82) and an elementary inequality
entails

Nγ

(

e−λHg(B̄(ρ,b))− e−λHg(B̄(ρ,b+h))
)

= Nγ

(

e−λHg(B̄(ρ,b))
(

1−e−Lb
ζ κ̃h(λ,0)

) )

≤ κ̃h(λ, 0)

(here we use the fact Nγ(Lb
ζ ) = 1 in the last inequality). This implies

κ̃a(λ, 0) = κ̃ 1
n
(λ, 0) + n κ̃ 1

n
(λ, 0)

∫
⌊na⌋−1

n

0

Gn(b, λ)db+Rn(a, λ) , (90)

where we have set
{

Gn(b, λ) = (κ̃1/n(λ, 0) )
−1Nγ

(

e−λHg(B̄(ρ,⌈nb⌉/n))
(

1−e−L
⌈nb⌉/n
ζ κ̃1/n(λ,0)

) )

,

Rn(a, λ) = Nγ

(

e−λHg(B̄(ρ,⌊na⌋/n))
(

1−e−L
⌊na⌋/n
ζ κ̃{an}/n(λ,0)

) )

,

where ⌊·⌋ stands for the integer-part function, where ⌈·⌉ = ⌊·⌋ + 1 and where {an} =
na− ⌊na⌋ stands for the fractional part of na.

Observe that Nγ-a.e. we have limh→0Hg(B̄(ρ, h)) = Hg({ρ}) = 0, since any Hausdorf
measure is diffuse. Dominated convergence entails that limh→0 κ̃h(λ, 0) = 0, for any
λ ∈ (0,∞). Consequently, limn κ̃1/n(λ, 0) = 0. Moreover, we get

Rn(a, λ) ≤ κ̃ {an}
n

(λ, 0) Nγ

(

L⌊na⌋/n

ζ

)

= κ̃ {an}
n

(λ, 0)−−−→
n→∞

0.

36



Next, observe that

Gn(b, λ) ≤ Nγ

(

e−λHg(B̄(ρ,⌈nb⌉/n))L⌈nb⌉/n

ζ

)

= U(λ,
⌈nb⌉

n
) .

By (89), we get Gn(b, λ) ≤ U(λ, b). By (85), Hg is a finite measure. Then, b 7→
Hg(B̄(ρ, b) ) is right continuous. Recall that we work with a right-continuous modification
of b 7→ Lb

ζ . Therefore, Fatou’s Lemma implies

U(λ, b) = Nγ

(

e−λHg(B̄(ρ,b) )Lb
ζ

)

≤ lim inf
n

G(b, λ) ,

Thus, we get
lim
n
Gn(b, λ) = U(b, λ) = Nγ

(

e−λHg(B̄(ρ,b) )Lb
ζ

)

.

By dominated convergence, we get

lim
n

∫
⌊na⌋−1

n

0

Gn(b, λ)db =

∫ a

0

Nγ

(

e−λHg(B̄(ρ,b) )Lb
ζ

)

db.

This limit combined with (90) implies limn nκ̃ 1
n
(λ, 0) = φ(λ) ∈ (0,∞), which implies (88).

�

Next observe that (88) implies (∂κ̃a/∂a)(λ, 0) = φ(λ)∂(κ̃a/∂µ)(λ, 0) and by the scaling
property (83) we easily get

φ(λ) = c0λ , with c0 := φ(1) ∈ (0,∞) . (91)

We next prove that for any b ∈ (0,∞),

Nγ −a.e. Hg(B̄(ρ, b) ) = m(B̄(ρ, b) ) . (92)

Proof of (92): we first prove this result for b = 1. To that end, we set

Dn(λ) = 1−e−λHg(B̄(ρ,1))−Sn(λ)

where Sn(λ) stands for

Sn(λ) =
∑

1≤k<n

e−λHg(B̄(ρ,k/n))
(

1− e−L
k/n
ζ κ̃1/n(λ,0)

)

.

We want to prove that limnNγ(Dn(λ)
2) = 0. To that end, observe that

Dn(λ) =
∑

0≤k<n

Vk ,

37



where we have set
{

Vk = e−λHg(B̄(ρ,k/n))
(

e−L
k/n
ζ κ̃1/n(λ,0) − e−λHg(C(k/n) )

)

, 1 ≤ k < n ,

V0 = 1− e−λHg(B̄(ρ,1/n)) ,

with C(k/n) = B̄(ρ, k+1
n
))\B̄(ρ, k

n
). Let 1 ≤ k ≤ n − 1. Observe that T (k/n) = ∅,

Nγ-a.e. on {supH ≤ k/n}. Thus, Vk = 0, Nγ-a.e. on {supH ≤ k/n}. This easily implies
that

∀ 0 < k < n , |Vk| ≤ 2 · 1{supH>k/n} .

Since Nγ(supH > k/n) = v(k/n) < ∞, we have Nγ(|VkVℓ|) < ∞, for any 0 ≤ k < ℓ < n
and Nγ(V

2
k ) < ∞, for any 1 ≤ k < n. Next observe that V 2

0 ≤ V0. Thus Nγ(V
2
0 ) ≤

Nγ(V0) = κ̃1/n(λ, 0) <∞. These estimates justify the following:

Nγ(Dn(λ)
2) = 2

∑

0≤k<ℓ<n

Nγ(VkVℓ) +
∑

0≤k<n

Nγ(V
2
k ) , (93)

We first fix 0 ≤ k < ℓ < n. Observe that Vℓ is N (ℓ/n)
γ -integrable and (82) implies

N (ℓ/n)
γ (Vℓ |Gℓ/n) = 0. Moreover, Vk is G(k+1)/n-measurable. Therefore, it is Gℓ/n-measurable.

Since Nγ(T (ℓ/n) 6= ∅) = Nγ(supH > ℓ/n) = v(ℓ/n), we get

Nγ

(

VkVℓ
)

= v
( ℓ

n

)

N (ℓ/n)
γ

(

VkVℓ
)

= v
( ℓ

n

)

N (ℓ/n)
γ

(

VkN
ℓ/n
γ (Vℓ | Gℓ/n)

)

= 0 .

We next fix 1 ≤ k < n. An easy argument combined with (82) entails that for any
1 ≤ k < n, we have

N
k/n

γ

(

V 2
k | Gk/n

)

= e−2λHg(B̄(ρ,k/n))
(

e−L
k/n
ζ κ̃1/n(2λ,0) − e−2L

k/n
ζ κ̃1/n(λ,0)

)

.

Note that λ 7→ κ̃a(λ, 0) is clearly concave. Thus, 2κ̃1/n(λ, 0)− κ̃1/n(2λ, 0) is nonnegative,
which implies

N (k/n)
γ

(

V 2
k | Gk/n

)

≤ (2κ̃1/n(λ, 0)− κ̃1/n(2λ, 0) )L
k/n

ζ .

This entails Nγ(V
2
k ) ≤ 2κ̃1/n(λ, 0)− κ̃1/n(2λ, 0), since Nγ(L

k/n

ζ ) = 1. We also checks that
Nγ(V0) = 2κ̃1/n(λ, 0)− κ̃1/n(2λ, 0). These bounds combined with (93) imply

Nγ(Dn(λ)
2) ≤ 2nκ̃1/n(λ, 0)− nκ̃1/n(2λ, 0) .

When n goes to ∞, the right member of the previous inequality tends to 2φ(λ)− φ(2λ)
that is null since φ is linear. Thus,

∀λ ∈ (0,∞) , Nγ

(

Dn(λ)
2
)

= 0 .

Fatou’s lemma then entails lim infn |Dn(λ)| = 0 Nγ-a.e. Now observe that

Sn(λ) =
n−1

n
nκ̃ 1

n
(λ, 0)

∫ 1

1/n

e−λHg(B̄(ρ,⌊b/n⌋/n)) 1

κ̃ 1
n
(λ,0)

(

1− eL
⌊b/n⌋/n
ζ κ̃1/n(λ,0)

)

db.
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Since limn nκ̃1/n(λ, 0) = φ(λ) = c0λ, we easily get

Nγ −a.e. lim
n
Sn(λ) = c0λ

∫ 1

0

e−λHg(B̄(ρ,b))Lb
ζ db .

This implies that for any λ ∈ (0,∞), Nγ-a.e.

1− e−λHg(B̄(ρ,1)) = c0λ

∫ 1

0

e−λHg(B̄(ρ,b))Lb
ζ db .

Divide this equation by λ and let λ go to 0, to get Hg(B̄(ρ, 1)) =
∫ 1

0
Lb

ζdb. Now recall
that m =

∫∞

0
ℓbdb, which implies (92) when b = 1.

By the scaling property, the joint law of Hg(B̄(ρ, b)) and m(B̄(ρ, b)) under Nγ is the
same as the joint law of bγ/(γ−1)Hg(B̄(ρ, 1)) and bγ/(γ−1)m(B̄(ρ, 1)) under b−1/(γ−1)Nγ, which
easily implies (92) for any b ∈ (0,∞). �

We next prove the following

Nγ −a.e. Hg = c0m . (94)

Proof of (94): recall that (ga
j , da

j ), j ∈ Ia, stands for the excursion intervals of H above
a and that Ha,j stands for the excursion correponding to (ga

j , d
a
j ). Recall that we have

set T a
j = p([ga

j , da
j ]) and σa

j = p(ga
j ) so that the subtree (T a

j , d, σa
j ) is isometric to the

rooted compact real tree coded by the excursion Ha,j . For any b ≥ 0, recall the notation
T a

j (· ≤ b) = {σ ∈ T a
j : d(σa

j , σ) ≤ b)} that is the closed ball in (T a
j , d, σ

a
j ) with center

σa
j and radius b. Since Hg(T a

j (· ≤ b) ) is a measurable function of Ha,j , the branching
property (36) and (92) imply for any a, b ≥ 0,

∀ a, b > 0, Nγ −a.e. ∀j ∈ Ia, Hg(T
a
j (· ≤ b) ) = c0m(T a

j (· ≤ b) ). (95)

Recall that m(Sk(T )) = 0, Nγ-a.e. (here Sk(T ) stands for the skeleton of T ). This
result, combined with (95), shows that there exists a Borel set A ⊂ D([0,∞),R) whose
complementary set is Nγ-negligible and such that m(Sk(T )) = 0 and

∀ a, b ∈ Q+ , ∀j ∈ Ia , Hg(T
a
j (· ≤ b) ) = c0m(T a

j (· ≤ b) ) (96)

on A. We now work deterministically on A. Note that for any a ∈ Q+, any j ∈ Ia and
any b ∈ (0,∞), we have

T a
j (· ≤ b) =

⋂

b′∈Q+:b′≥b

T a
j (· ≤ b′) .

Since m and Hg are finite measures, (96) holds for any b ∈ [0,∞).
Let σ be a point in T that is not a leaf. Then T \{σ} has at least one connected

component that does not contain the root ρ. Let us denote such a component by T̃ o.
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To ease the discussion, we call such a subset of T an open upper subtree. Then, for any
b ∈ (0,∞), we denote by T̃ o(≤ b) the set of σ′ ∈ T̃ o such that d(σ, σ′) ≤ b. It is easy
to prove that T̃ o(· ≤ b) is the union of a non-decreasing sequence of subtrees of the form
T a

j (· ≤ b′), with a ∈ Q+. This entails Hg(T̃ o(· ≤ b)) = c0m(T̃ o(· ≤ b)).
We next fix σ ∈ T and r > 0. We denote by T o

j , j ∈ J the connected components
of T \[[ρ, σ]]. For any j ∈ J , denote by σj the unique point of [[ρ, σ]] such that {σj} ∪ T o

j

is the closure of T o
j . Note that Tj is a connected component of T \{σj} that does not

contains the root. Namely, T o
j is an open upper subtree. Moreover, observe that

B̄(ρ, r)\[[ρ, σ]] =
⋃

{

T o
j ( · ≤r−d(σ, σj) ) ; j ∈ J : 0 ≤ d(σ, σj) < r

}

.

This implies H(B̄(ρ, r)\[[ρ, σ]]) = c0m(B̄(ρ, r)\[[ρ, σ]]). Now note that [[ρ, σ]] is isometric
to a compact interval of the line. Thus, the Hausdorff dimension of [[ρ, σ]] is 1 (or 0 if it
reduces to {ρ}). Therefore, Hg([[ρ, σ]]) = 0, since g is regularly varying at 0 with exponent
γ/(γ − 1) > 1. Next observe that [[ρ, σ[[⊂ Sk(T ). Consequently, we get m([[ρ, σ]]) = 0.
We thus have proved that on A, Hg and c0m are finite Borel measures on T that agree
on the set of all closed balls of T . This clearly implies (94). �

We have proved that (84) implies Hg = c0m Nγ-a.e. We now argue as in the proof
of Theorem 1.3 to get a contradiction thanks to the test stated in Proposition 1.4. This
proves that (84) is wrong, which entails (Claim 2). As already mentioned, it completes
the proof of Theorem 1.5. �
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