In this paper we discuss Hausdorff and packing measures of random continuous
trees called stable trees. Stable trees form a specific class of L\'evy trees
(introduced by Le Gall and Le Jan in 1998) that contains Aldous's continuum
random tree (1991) which corresponds to the Brownian case. We provide results
for the whole stable trees and for their level sets that are the sets of points
situated at a given distance from the root. We first show that there is no
exact packing measure for levels sets. We also prove that non-Brownian stable
trees and their level sets have no exact Hausdorff measure with regularly
varying gauge function, which continues previous results from a joint work with
J-F Le Gall (2006).Comment: 40 page