130 research outputs found
The microaerophilic microbiota of de-novo paediatric inflammatory bowel disease: the BISCUIT study
<p>Introduction: Children presenting for the first time with inflammatory bowel disease (IBD) offer a unique opportunity to study aetiological agents before the confounders of treatment. Microaerophilic bacteria can exploit the ecological niche of the intestinal epithelium; Helicobacter and Campylobacter are previously implicated in IBD pathogenesis. We set out to study these and other microaerophilic bacteria in de-novo paediatric IBD.</p>
<p>Patients and Methods: 100 children undergoing colonoscopy were recruited including 44 treatment naïve de-novo IBD patients and 42 with normal colons. Colonic biopsies were subjected to microaerophilic culture with Gram-negative isolates then identified by sequencing. Biopsies were also PCR screened for the specific microaerophilic bacterial groups: Helicobacteraceae, Campylobacteraceae and Sutterella wadsworthensis.</p>
<p>Results: 129 Gram-negative microaerophilic bacterial isolates were identified from 10 genera. The most frequently cultured was S. wadsworthensis (32 distinct isolates). Unusual Campylobacter were isolated from 8 subjects (including 3 C. concisus, 1 C. curvus, 1 C. lari, 1 C. rectus, 3 C. showae). No Helicobacter were cultured. When comparing IBD vs. normal colon control by PCR the prevalence figures were not significantly different (Helicobacter 11% vs. 12%, p = 1.00; Campylobacter 75% vs. 76%, p = 1.00; S. wadsworthensis 82% vs. 71%, p = 0.312).</p>
<p>Conclusions: This study offers a comprehensive overview of the microaerophilic microbiota of the paediatric colon including at IBD onset. Campylobacter appear to be surprisingly common, are not more strongly associated with IBD and can be isolated from around 8% of paediatric colonic biopsies. S. wadsworthensis appears to be a common commensal. Helicobacter species are relatively rare in the paediatric colon.</p>
Exome sequencing and genotyping identify a rare variant in NLRP7 gene associated with ulcerative colitis.
Background and Aims
Although genome-wide association studies [GWAS] in inflammatory bowel disease [IBD] have identified a large number of common disease susceptibility alleles for both Crohn’s disease [CD] and ulcerative colitis [UC], a substantial fraction of IBD heritability remains unexplained, suggesting that rare coding genetic variants may also have a role in pathogenesis. We used high-throughput sequencing in families with multiple cases of IBD, followed by genotyping of cases and controls, to investigate whether rare protein-altering genetic variants are associated with susceptibility to IBD.
Methods
Whole-exome sequencing was carried out in 10 families in whom three or more individuals were affected with IBD. A stepwise filtering approach was applied to exome variants, to identify potential causal variants. Follow-up genotyping was performed in 6025 IBD cases [2948 CD; 3077 UC] and 7238 controls.
Results
Our exome variant analysis revealed coding variants in the NLRP7 gene that were present in affected individuals in two distinct families. Genotyping of the two variants, p.S361L and p.R801H, in IBD cases and controls showed that the p.S361L variant was significantly associated with an increased risk of ulcerative colitis [odds ratio 4.79, p = 0.0039] and IBD [odds ratio 3.17, p = 0.037]. A combined analysis of both variants showed suggestive association with an increased risk of IBD [odds ratio 2.77, p = 0.018].
Conclusions
The results suggest that NLRP7 signalling and inflammasome formation may be a significant component in the pathogenesis of IBD
The contribution of genetic variants to disease depends on the ruler
Our understanding of the genetic basis of disease has evolved from descriptions of overall heritability or familiality to the identification of large numbers of risk loci. One can quantify the impact of such loci on disease using a plethora of measures, which can guide future research decisions. However, different measures can attribute varying degrees of importance to a variant. In this Analysis, we consider and contrast the most commonly used measures-specifically, the heritability of disease liability, approximate heritability, sibling recurrence risk, overall genetic variance using a logarithmic relative risk scale, the area under the receiver-operating curve for risk prediction and the population attributable fraction-and give guidelines for their use that should be explicitly considered when assessing the contribution of genetic variants to disease
Recommended from our members
High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis.
This is the author accepted manuscript. The final version is available from NPG at http://www.nature.com/ng/journal/v47/n2/full/ng.3176.html#acknowledgmentsGenome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD.We would like to thank the International PSC study group (http://www.ipscsg.org/) for sharing data. We are grateful to B.A. Lie and K. Holm for helpful discussions. J.D.R. holds a Canada Research Chair, and this work was supported by a US National Institute of Diabetes and Digestive and Kidney Diseases grant (NIDDK; R01 DK064869 and U01 DK062432). The laboratory of A.F. is supported by the German Ministry of Education and Research (BMBF) grant program e:Med (sysINFLAME). A.F. receives infrastructure support from the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence 'Inflammation at Interfaces' and holds an endowment professorship (Peter Hans Hofschneider Professorship) of the Foundation for Experimental Biomedicine (Zurich, Switzerland). Grant support for T.H.K. and A.F. was received from the European Union Seventh Framework Programme (FP7/2007-2013, grant number 262055, ESGI). M.N.C. is supported by the Intramural Research Program of the US National Institutes of Health (NIH), Frederick National Laboratory, Center for Cancer Research. This project has been funded in whole or in part with federal funds from the Frederick National Laboratory for Cancer Research, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the US Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US government. J.C.B. was supported by a Wellcome Trust grant (WT098051). D.M. and V.K. are supported by the NIHR Cambridge Biomedical Research Centre. L.P.S. is supported by an NIDDK grant (U01 DK062429-14). J.A.T. is supported by the UK Medical Research Council. D.P.B.M. is supported by the Leona M. and Harry B. Helmsley Charitable Trust, the European Union (305479) and by grants from the NIDDK (U01 DK062413, P01 DK046763-19, U54 DE023789-01), the National Institute of Allergy and Infectious Diseases (NIAID; U01 AI067068) and the Agency for Healthcare Research and Quality (AHRQ; HS021747). R.H.D. holds the Inflammatory Bowel Disease Genetic Research endowed chair at the University of Pittsburgh and was supported by an NIDDK grant (U01 DK062420) and a US National Cancer Institute grant (CA141743). S.L.H. and J.R.O. would like to also acknowledge the support of the US NIH (R01 NS049477 and 1U19 A1067152) and the National Multiple Sclerosis Society (RG 2899-D11). S.L. wishes to acknowledge support from the Australian National Health and Medical Research Council (R.D. Wright Career Development Fellowship, APP1053756)
Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease
Genetic association studies have identified 215 risk loci for inflammatory bowel disease, thereby uncovering fundamental aspects of its molecular biology. We performed a genome-wide association study of 25,305 individuals and conducted a meta-analysis with published summary statistics, yielding a total sample size of 59,957 subjects. We identified 25 new susceptibility loci, 3 of which contain integrin genes that encode proteins in pathways that have been identified as important therapeutic targets in inflammatory bowel disease. The associated variants are correlated with expression changes in response to immune stimulus at two of these genes ( and ) and at previously implicated loci (and ). In all four cases, the expression-increasing allele also increases disease risk. We also identified likely causal missense variants in a gene implicated in primary immune deficiency, , and a negative regulator of inflammation, . Our results demonstrate that new associations at common variants continue to identify genes relevant to therapeutic target identification and prioritization.This work was co-funded by the Wellcome Trust [098051] and the Medical Research Council, UK [MR/J00314X/1]. Case collections were supported by Crohn’s and Colitis UK. KMdL, LM, CAL, YL, DR, JG-A, NJP, CAA and JCB are supported by the Wellcome Trust [098051; 093885/Z/10/Z; 094491/Z/10/Z]. KMdL is supported by a Woolf Fisher Trust scholarship. CAL is a clinical lecturer funded by the NIHR. We thank Anna Stanton for co-ordinating the Guy’s and St Thomas’ patient recruitment. We acknowledge support from the Department of Health via the NIHR comprehensive Biomedical Research Centre awards to Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London and to Addenbrooke’s Hospital, Cambridge in partnership with the University of Cambridge. This research was also supported by the NIHR Newcastle Biomedical Research Centre. The UK Household Longitudinal Study is led by the Institute for Social and Economic Research at the University of Essex and funded by the Economic and Social Research Council
Shared genetic variants suggest common pathways in allergy and autoimmune diseases.
BACKGROUND: The relationship between allergy and autoimmune disorders is complex and poorly understood. OBJECTIVE: To investigate commonalities in genetic loci and pathways between allergy and autoimmune diseases to elucidate shared disease mechanisms. METHODS: We meta-analyzed two GWAS on self-reported allergy and sensitization comprising a total of 62,330 individuals. These results were used to calculate enrichment for SNPs previously associated with autoimmune diseases. Furthermore, we probed for enrichment within genetic pathways and of transcription factor binding sites, and characterized commonalities in the variant burden on tissue-specific regulatory sites by calculating the enrichment of allergy SNPs falling in gene regulatory regions in various cells using Encode Roadmap DHS data, and compared the allergy data with all known diseases. RESULTS: Among 290 loci previously associated with 16 autoimmune diseases, we found a significant enrichment of loci also associated with allergy (p=1.4e-17) encompassing 29 loci at a false discovery rate<0.05. Such enrichment seemed to be a general characteristic for all autoimmune diseases. Among the common loci, 48% had the same direction of effect for allergy and autoimmune diseases. Additionally, we observed an enrichment of allergy SNPs falling within immune pathways and regions of chromatin accessible in immune cells that was also represented in autoimmune diseases, but not in other diseases. CONCLUSION: We identified shared susceptibility loci and commonalities in pathways between allergy and autoimmune diseases, suggesting shared diseases mechanisms. Further studies of these shared genetic mechanisms might help understanding the complex relationship between these diseases, including the parallel increase in disease prevalence
Correction:Insights into the genetic epidemiology of Crohn's and rare diseases in the Ashkenazi Jewish population
The data in the S2 Data File does not display correctly. Please view the correct S2 Data File below.</p
Pooled sequencing of 531 genes in inflammatory bowel disease identifies an associated rare variant in BTNL2 and implicates other immune related genes.
The contribution of rare coding sequence variants to genetic susceptibility in complex disorders is an important but unresolved question. Most studies thus far have investigated a limited number of genes from regions which contain common disease associated variants. Here we investigate this in inflammatory bowel disease by sequencing the exons and proximal promoters of 531 genes selected from both genome-wide association studies and pathway analysis in pooled DNA panels from 474 cases of Crohn's disease and 480 controls. 80 variants with evidence of association in the sequencing experiment or with potential functional significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 population controls. The top 5 disease associated variants were genotyped in an extension panel of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of 10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene within the major histocompatibility complex was significantly associated with increased risk for IBD (p = 9.65x10-10, OR = 2.3[95% CI = 1.75-3.04]), but was independent of the known common associated CD and UC variants at this locus. Rare (T) or decreased risk (IL12B p.V298F, and NICN p.H191R) of IBD. These results provide additional insights into the involvement of the inhibition of T cell activation in the development of both sub-phenotypes of inflammatory bowel disease. We suggest that although rare coding variants may make a modest overall contribution to complex disease susceptibility, they can inform our understanding of the molecular pathways that contribute to pathogenesis
- …