2,218 research outputs found

    Aerosol delivery of trail pheromone disrupts the foraging of the red imported fire ant, \u3ci\u3eSolenopsis invicta\u3c/i\u3e

    Get PDF
    BACKGROUND: The fire ant, Solenopsis invicta, is one of the most aggressive and invasive species in the world. The trail pheromone Z,E-α-farnesene (91% purity)was prepared, and disruption of worker trail orientation was tested using an ethanol based aerosol formulation presenting a single puff of this compound by airbrush and compressed air. Trail-following behavior was recorded by overhead webcam and ants digitized before and after presentation of the aerosol treatment at four rates (1.6, 16, 160 and 1600 ng cm−2). RESULTS: Ants preferred 110 ng cm−1 over 11, 1.1 and 0.11 ng cm−1 for trail following. Within seconds of presentation of 1600 ng cm−2, the highest dose tested, trail disruption was observed. Disruption was evident as reduced arrival success and reduction in the trail integrity statistic (r2), as well as increased deviation from the trail (deg). The distribution of walking track angles was also flattened. CONCLUSIONS: The feasibility of using aerosol for delivery of trail pheromone was demonstrated, but the need for high purity combined with the difficulty of commercial supply makes this technique impractical. However, the commercial production of Z,E-α-farnesene of high purity by industrial biotechnology or from (E)-nerolidol may be possible in future, which would facilitate further development of trail pheromone disruption of S. invicta

    Metagenomic Profiling Reveals Lignocellulose Degrading System in a Microbial Community Associated with a Wood-Feeding Beetle

    Get PDF
    The Asian longhorned beetle (Anoplophora glabripennis) is an invasive, wood-boring pest that thrives in the heartwood of deciduous tree species. A large impediment faced by A. glabripennis as it feeds on woody tissue is lignin, a highly recalcitrant biopolymer that reduces access to sugars and other nutrients locked in cellulose and hemicellulose. We previously demonstrated that lignin, cellulose, and hemicellulose are actively deconstructed in the beetle gut and that the gut harbors an assemblage of microbes hypothesized to make significant contributions to these processes. While lignin degrading mechanisms have been well characterized in pure cultures of white rot basidiomycetes, little is known about such processes in microbial communities associated with wood-feeding insects. The goals of this study were to develop a taxonomic and functional profile of a gut community derived from an invasive population of larval A. glabripennis collected from infested host trees and to identify genes that could be relevant for the digestion of woody tissue and nutrient acquisition. To accomplish this goal, we taxonomically and functionally characterized the A. glabripennis midgut microbiota through amplicon and shotgun metagenome sequencing and conducted a large-scale comparison with the metagenomes from a variety of other herbivoreassociated communities. This analysis distinguished the A. glabripennis larval gut metagenome from the gut communities of other herbivores, including previously sequenced termite hindgut metagenomes. Genes encoding enzymes were identified in the A. glabripennis gut metagenome that could have key roles in woody tissue digestion including candidate lignin degrading genes (laccases, dye-decolorizing peroxidases, novel peroxidases and β- etherases), 36 families of glycoside hydrolases (such as cellulases and xylanases), and genes that could facilitate nutrient recovery, essential nutrient synthesis, and detoxification. This community could serve as a reservoir of novel enzymes to enhance industrial cellulosic biofuels production or targets for novel control methods for this invasive and highly destructive insect

    Lactation and neonatal nutrition: defining and refining the critical questions.

    Get PDF
    This paper resulted from a conference entitled "Lactation and Milk: Defining and refining the critical questions" held at the University of Colorado School of Medicine from January 18-20, 2012. The mission of the conference was to identify unresolved questions and set future goals for research into human milk composition, mammary development and lactation. We first outline the unanswered questions regarding the composition of human milk (Section I) and the mechanisms by which milk components affect neonatal development, growth and health and recommend models for future research. Emerging questions about how milk components affect cognitive development and behavioral phenotype of the offspring are presented in Section II. In Section III we outline the important unanswered questions about regulation of mammary gland development, the heritability of defects, the effects of maternal nutrition, disease, metabolic status, and therapeutic drugs upon the subsequent lactation. Questions surrounding breastfeeding practice are also highlighted. In Section IV we describe the specific nutritional challenges faced by three different populations, namely preterm infants, infants born to obese mothers who may or may not have gestational diabetes, and infants born to undernourished mothers. The recognition that multidisciplinary training is critical to advancing the field led us to formulate specific training recommendations in Section V. Our recommendations for research emphasis are summarized in Section VI. In sum, we present a roadmap for multidisciplinary research into all aspects of human lactation, milk and its role in infant nutrition for the next decade and beyond

    Association of Blood Biomarkers With Acute Sport-Related Concussion in Collegiate Athletes: Findings From the NCAA and Department of Defense CARE Consortium

    Get PDF
    Importance: There is potential scientific and clinical value in validation of objective biomarkers for sport-related concussion (SRC). Objective: To investigate the association of acute-phase blood biomarker levels with SRC in collegiate athletes. Design, Setting, and Participants: This multicenter, prospective, case-control study was conducted by the National Collegiate Athletic Association (NCAA) and the US Department of Defense Concussion Assessment, Research, and Education (CARE) Consortium from February 20, 2015, to May 31, 2018, at 6 CARE Advanced Research Core sites. A total of 504 collegiate athletes with concussion, contact sport control athletes, and non-contact sport control athletes completed clinical testing and blood collection at preseason baseline, the acute postinjury period, 24 to 48 hours after injury, the point of reporting being asymptomatic, and 7 days after return to play. Data analysis was conducted from March 1 to November 30, 2019. Main Outcomes and Measures: Glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light chain, and tau were quantified using the Quanterix Simoa multiplex assay. Clinical outcome measures included the Sport Concussion Assessment Tool-Third Edition (SCAT-3) symptom evaluation, Standardized Assessment of Concussion, Balance Error Scoring System, and Brief Symptom Inventory 18. Results: A total of 264 athletes with concussion (mean [SD] age, 19.08 [1.24] years; 211 [79.9%] male), 138 contact sport controls (mean [SD] age, 19.03 [1.27] years; 107 [77.5%] male), and 102 non-contact sport controls (mean [SD] age, 19.39 [1.25] years; 82 [80.4%] male) were included in the study. Athletes with concussion had significant elevation in GFAP (mean difference, 0.430 pg/mL; 95% CI, 0.339-0.521 pg/mL; P < .001), UCH-L1 (mean difference, 0.449 pg/mL; 95% CI, 0.167-0.732 pg/mL; P < .001), and tau levels (mean difference, 0.221 pg/mL; 95% CI, 0.046-0.396 pg/mL; P = .004) at the acute postinjury time point compared with preseason baseline. Longitudinally, a significant interaction (group × visit) was found for GFAP (F7,1507.36 = 16.18, P < .001), UCH-L1 (F7,1153.09 = 5.71, P < .001), and tau (F7,1480.55 = 6.81, P < .001); the interaction for neurofilament light chain was not significant (F7,1506.90 = 1.33, P = .23). The area under the curve for the combination of GFAP and UCH-L1 in differentiating athletes with concussion from contact sport controls at the acute postinjury period was 0.71 (95% CI, 0.64-0.78; P < .001); the acute postinjury area under the curve for all 4 biomarkers combined was 0.72 (95% CI, 0.65-0.79; P < .001). Beyond SCAT-3 symptom score, GFAP at the acute postinjury time point was associated with the classification of athletes with concussion from contact controls (β = 12.298; 95% CI, 2.776-54.481; P = .001) and non-contact sport controls (β = 5.438; 95% CI, 1.676-17.645; P = .005). Athletes with concussion with loss of consciousness or posttraumatic amnesia had significantly higher levels of GFAP than athletes with concussion with neither loss of consciousness nor posttraumatic amnesia at the acute postinjury time point (mean difference, 0.583 pg/mL; 95% CI, 0.369-0.797 pg/mL; P < .001). Conclusions and Relevance: The results suggest that blood biomarkers can be used as research tools to inform the underlying pathophysiological mechanism of concussion and provide additional support for future studies to optimize and validate biomarkers for potential clinical use in SRC

    The Absolute Magnitude of RRc Variables From Statistical Parallax

    Full text link
    We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc) determined purely from statistical parallax. We use a sample of 247 RRc selected from the All Sky Automated Survey (ASAS) for which high-quality light curves, photometry and proper motions are available. We obtain high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie RR Lyrae Survey (CARRS). We find that M_(V,RRc) = 0.52 +/- 0.11 at a mean metallicity of [Fe/H] = -1.59. This is to be compared with previous estimates for RRab stars (M_(V,RRab) = 0.75 +/- 0.13 and the only direct measurement of an RRc absolute magnitude (RZ Cephei, M_(V, RRc) = 0.27 +/- 0.17). We find the bulk velocity of the halo to be (W_pi, W_theta, W_z) = (10.9,34.9,7.2) km/s in the radial, rotational and vertical directions with dispersions (sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (154.7, 103.6, 93.8) km/s. For the disk, we find (W_pi, W_theta, W_z) = (8.5, 213.2, -22.1) km/s with dispersions (sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (63.5, 49.6, 51.3) km/s. Finally, we suggest that UCAC2 proper motion errors may be overestimated by about 25%Comment: Submitted to ApJ. 11 pages including 6 figure

    Discovery of Genes Essential for Heme Biosynthesis through Large-Scale Gene Expression Analysis

    Get PDF
    SummaryHeme biosynthesis consists of a series of eight enzymatic reactions that originate in mitochondria and continue in the cytosol before returning to mitochondria. Although these core enzymes are well studied, additional mitochondrial transporters and regulatory factors are predicted to be required. To discover such unknown components, we utilized a large-scale computational screen to identify mitochondrial proteins whose transcripts consistently coexpress with the core machinery of heme biosynthesis. We identified SLC25A39, SLC22A4, and TMEM14C, which are putative mitochondrial transporters, as well as C1orf69 and ISCA1, which are iron-sulfur cluster proteins. Targeted knockdowns of all five genes in zebrafish resulted in profound anemia without impacting erythroid lineage specification. Moreover, silencing of Slc25a39 in murine erythroleukemia cells impaired iron incorporation into protoporphyrin IX, and vertebrate Slc25a39 complemented an iron homeostasis defect in the orthologous yeast mtm1Δ deletion mutant. Our results advance the molecular understanding of heme biosynthesis and offer promising candidate genes for inherited anemias

    Metal oxide–zeolite composites in transformation of methanol to hydrocarbons : do iron oxide and nickel oxide matter?

    Get PDF
    The methanol-to-hydrocarbon (MTH) reaction has received considerable attention as utilizing renewable sources of both value-added chemicals and fuels becomes a number one priority for society. Here, for the first time we report the development of hierarchical zeolites (ZSM-5) containing both iron oxide and nickel oxide nanoparticles. By modifying the iron oxide (magnetite, Fe3O4) amounts, we are able to control the catalyst activity and the product distribution in the MTH process. At the medium Fe3O4 loading, the major fraction is composed of C9–C11 hydrocarbons (gasoline fraction). At the higher Fe3O4 loading, C1–C4 hydrocarbons prevail in the reaction mixture, while at the lowest magnetite loading the major component is the C5–C8 hydrocarbons. Addition of Ni species to Fe3O4–ZSM-5 leads to the formation of mixed Ni oxides (NiO/Ni2O3) positioned either on top of or next to Fe3O4 nanoparticles. This modification allowed us to significantly improve the catalyst stability due to diminishing coke formation and disordering of the coke formed. The incorporation of Ni oxide species also leads to a higher catalyst activity (up to 9.3 g(methanol)/(g(ZSM-5) × h)) and an improved selectivity (11.3% of the C5–C8 hydrocarbons and 23.6% of the C9–C11 hydrocarbons), making these zeolites highly promising for industrial applications

    The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode as Deflagrations?

    Get PDF
    We present extensive u'g'r'i'BVRIYJHKs photometry and optical spectroscopy of SN 2005hk. These data reveal that SN 2005hk was nearly identical in its observed properties to SN 2002cx, which has been called ``the most peculiar known type Ia supernova.'' Both supernovae exhibited high ionization SN 1991T-like pre-maximum spectra, yet low peak luminosities like SN 1991bg. The spectra reveal that SN 2005hk, like SN 2002cx, exhibited expansion velocities that were roughly half those of typical type Ia supernovae. The R and I light curves of both supernovae were also peculiar in not displaying the secondary maximum observed for normal type Ia supernovae. Our YJH photometry of SN 2005hk reveals the same peculiarity in the near-infrared. By combining our optical and near-infrared photometry of SN 2005hk with published ultraviolet light curves obtained with the Swift satellite, we are able to construct a bolometric light curve from ~10 days before to ~60 days after B maximum. The shape and unusually low peak luminosity of this light curve, plus the low expansion velocities and absence of a secondary maximum at red and near-infrared wavelengths, are all in reasonable agreement with model calculations of a 3D deflagration which produces ~0.25 M_sun of 56Ni.Comment: Accepted by PASP, to appear in April 2007 issue, 63 pages, 16 figures, 11 table

    The Chemical Evolution Carousel of Spiral Galaxies : Azimuthal Variations of Oxygen Abundance in NGC1365

    Get PDF
    19 pages, 13 figures. Accepted to ApJThe spatial distribution of oxygen in the interstellar medium of galaxies is the key to understanding how efficiently metals that are synthesized in massive stars can be redistributed across a galaxy. We present here a case study in the nearby spiral galaxy NGC1365 using 3D optical data obtained in the TYPHOON Program. We find systematic azimuthal variations of the HII region oxygen abundance imprinted on a negative radial gradient. The 0.2 dex azimuthal variations occur over a wide radial range of 0.3 to 0.7 R25 and peak at the two spiral arms in NGC1365. We show that the azimuthal variations can be explained by two physical processes: gas undergoes localized, sub-kpc scale self-enrichment when orbiting in the inter-arm region, and experiences efficient, kpc scale mixing-induced dilution when spiral density waves pass through. We construct a simple chemical evolution model to quantitatively test this picture and find that our toy model can reproduce the observations. This result suggests that the observed abundance variations in NGC1365 are a snapshot of the dynamical local enrichment of oxygen modulated by spiral-driven, periodic mixing and dilution.Peer reviewedFinal Published versio

    Drug-gene interactions of antihypertensive medications and risk of incident cardiovascular disease: a pharmacogenomics study from the CHARGE consortium

    Get PDF
    Background Hypertension is a major risk factor for a spectrum of cardiovascular diseases (CVD), including myocardial infarction, sudden death, and stroke. In the US, over 65 million people have high blood pressure and a large proportion of these individuals are prescribed antihypertensive medications. Although large long-term clinical trials conducted in the last several decades have identified a number of effective antihypertensive treatments that reduce the risk of future clinical complications, responses to therapy and protection from cardiovascular events vary among individuals. Methods Using a genome-wide association study among 21,267 participants with pharmaceutically treated hypertension, we explored the hypothesis that genetic variants might influence or modify the effectiveness of common antihypertensive therapies on the risk of major cardiovascular outcomes. The classes of drug treatments included angiotensin-converting enzyme inhibitors, beta-blockers, calcium channel blockers, and diuretics. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, each study performed array-based genome-wide genotyping, imputed to HapMap Phase II reference panels, and used additive genetic models in proportional hazards or logistic regression models to evaluate drug-gene interactions for each of four therapeutic drug classes. We used meta-analysis to combine study-specific interaction estimates for approximately 2 million single nucleotide polymorphisms (SNPs) in a discovery analysis among 15,375 European Ancestry participants (3,527 CVD cases) with targeted follow-up in a case-only study of 1,751 European Ancestry GenHAT participants as well as among 4,141 African-Americans (1,267 CVD cases). Results Although drug-SNP interactions were biologically plausible, exposures and outcomes were well measured, and power was sufficient to detect modest interactions, we did not identify any statistically significant interactions from the four antihypertensive therapy meta-analyses (Pinteraction &gt; 5.0×10−8). Similarly, findings were null for meta-analyses restricted to 66 SNPs with significant main effects on coronary artery disease or blood pressure from large published genome-wide association studies (Pinteraction ≥ 0.01). Our results suggest that there are no major pharmacogenetic influences of common SNPs on the relationship between blood pressure medications and the risk of incident CVD
    corecore