29 research outputs found
RitHM: A Modular Software Framework for Runtime Monitoring Supporting Complete and Lossy Traces
Runtime verification (RV) is an effective and automated method for specification based offline testing as well as online monitoring of complex real-world systems. Firstly, a software framework for RV needs to exhibit certain design features to support usability, modifiability and efficiency. While usability and modifiability are important for providing support for expressive logical formalisms, efficiency is required to reduce the extra overhead at run time. Secondly, most existing techniques assume the existence of a complete execution trace for RV. However, real-world systems often produce incomplete execution traces due to reasons such as network issues, logging failures, etc. A few verification techniques have recently emerged for performing verification of incomplete execution traces. While some of these techniques sacrifice soundness, others are too restrictive in their tolerance for incompleteness.
For addressing the first problem, we introduce RitHM, a comprehensive framework, which enables development and integration of efficient verification techniques. RitHM's design takes into account various state-of-the-art techniques that are developed to optimize RV w.r.t. the efficiency of monitors and expressivity of logical formalisms. RitHM's design supports modifiability by allowing a reuse of efficient monitoring algorithms in the form of plugins, which can utilize heterogeneous back-ends. RitHM also supports extensions of logical formalisms through logic plugins. It also facilitates the interoperability between implementations of monitoring algorithms, and this feature allows utilizing different efficient algorithms for monitoring different sub-parts of a specification.
We evaluate RitHM's architecture and architectures of a few more tools using architecture trade-off analysis (ATAM) method. We also report empirical results, where RitHM is used for monitoring real-world systems. The results underscore the importance of various design features of RitHM.
For addressing the second problem, we identify a fragment of LTL specifications, which can be soundly monitored in the presence of transient loss events in an execution trace. We present an offline algorithm, which identifies whether an LTL formula is monitorable in a presence of a transient loss of events and constructs a loss-tolerant monitor depending upon the monitorability of the formula.
Our experimental results demonstrate that our method increases the applicability of RV for monitoring various real-world applications, which produce lossy traces. The extra overhead caused by our constructed monitors is minimal as demonstrated by application of our method on commonly used patterns of LTL formulas
Dysembryoplastic neuropithelial tumor: a rare case report
Dysembryoplastic neuropithelial tumor (DNET) is a rare recently described, benign glioneural tumor frequently associated with intractable seizures in children and young adults which is important to recognise clinically and radiologically as it is surgically curable without need for adjuvant chemoradiotherapy. We hereby present a case report of a 10year old male child who presented with intractable seizures and right parietal space occupying lesion which was diagnosed DNET radiologically, treated by microsurgical excision and confirmed histopathologically as DNET, thus emphasising multidisciplinary role in management of this rare entity
Model-Driven Trace Diagnostics for Pattern-based Temporal Specifications
Offline trace checking tools check whether a specification holds on a log of events recorded at run time; they yield a verification verdict (typically a boolean value) when the checking process ends. When the verdict is false, a software engineer needs to diagnose the property violations found in the trace in order to understand their cause and, if needed, decide for corrective actions to be performed on the system. However, a boolean verdict may not be informative enough to perform trace diagnostics, since it does not provide any useful information about the cause of the violation and because a property can be violated for multiple reasons.
The goal of this paper is to provide a practical and scalable so- lution to solve the trace diagnostics problem, in the settings of model-driven trace checking of temporal properties expressed in TemPsy, a pattern-based specification language. The main contributions of the paper are: a model-driven approach for trace diagnostics of pattern-based temporal properties expressed in TemPsy, which relies on the evaluation of OCL queries on an instance of a trace meta-model; the implementation of this trace diagnostics procedure in the TemPsy-Report tool; the evaluation of the scalability of TemPsy-Report, when used for the diagnostics of violations of real properties derived from a case study of our industrial partner. The results show that TemPsy-Report is able to collect diagnostic information from large traces (with one million events) in less than ten seconds; TemPsy-Report scales linearly with respect to the length of the trace and keeps approximately constant performance as the number of violations increases
Study of nuclei in the vicinity of the "Island of Inversion" through fusion-evaporation reaction
We report the first observation of high-spin states in nuclei in the vicinity
of the "island of inversion", populated via the 18O+18O fusion reaction at an
incident beam energy of 34 MeV. The fusion reaction mechanism circumvents the
limitations of non-equilibrated reactions used to populate these nuclei.
Detailed spin-parity measurements in these difficult to populate nuclei have
been possible from the observed coincidence anisotropy and the linear
polarization measurements. The spectroscopy of 33,34P and 33S is presented in
detail along with the results of calculations within the shell model framework
First international Competition on Runtime Verification: rules, benchmarks, tools, and final results of CRV 2014
The first international Competition on Runtime Verification (CRV) was held in September 2014, in Toronto, Canada, as a satellite event of the 14th international conference on Runtime Verification (RV’14). The event was organized in three tracks: (1) offline monitoring, (2) online monitoring of C programs, and (3) online monitoring of Java programs. In this paper, we report on the phases and rules, a description of the participating teams and their submitted benchmark, the (full) results, as well as the lessons learned from the competition.ICT COST ActionFFG HARMONIAAustrian Science Fund (FWF)31704
Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.
BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 Ă— coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution