
Model-Driven Trace Diagnostics for
Pattern-based Temporal Specifications

Wei Dou
University of Luxembourg

Luxembourg
dou@svv.lu

Domenico Bianculli
University of Luxembourg

Luxembourg
domenico.bianculli@uni.lu

Lionel Briand
University of Luxembourg

Luxembourg
lionel.briand@uni.lu

ABSTRACT

Offline trace checking tools check whether a specification holds
on a log of events recorded at run time; they yield a verification
verdict (typically a boolean value) when the checking process ends.
When the verdict is false, a software engineer needs to diagnose the
property violations found in the trace in order to understand their
cause and, if needed, decide for corrective actions to be performed
on the system. However, a boolean verdict may not be informative
enough to perform trace diagnostics, since it does not provide any
useful information about the cause of the violation and because a
property can be violated for multiple reasons.

The goal of this paper is to provide a practical and scalable so-
lution to solve the trace diagnostics problem, in the settings of
model-driven trace checking of temporal properties expressed in
TemPsy, a pattern-based specification language. The main contribu-
tions of the paper are: a model-driven approach for trace diagnostics
of pattern-based temporal properties expressed in TemPsy, which
relies on the evaluation of OCL queries on an instance of a trace
meta-model; the implementation of this trace diagnostics proce-
dure in the TemPsy-Report tool; the evaluation of the scalability
of TemPsy-Report, when used for the diagnostics of violations of
real properties derived from a case study of our industrial partner.
The results show that TemPsy-Report is able to collect diagnostic
information from large traces (with one million events) in less than
ten seconds; TemPsy-Report scales linearly with respect to the
length of the trace and keeps approximately constant performance
as the number of violations increases.

CCS CONCEPTS

• Software and its engineering → Software verification and

validation;

KEYWORDS

OCL, temporal constraints, trace diagnostics, offline trace checking,
run-time verification, specification patterns
ACM Reference Format:

Wei Dou, Domenico Bianculli, and Lionel Briand. 2018. Model-Driven Trace
Diagnostics for, Pattern-based Temporal Specifications. In ACM/IEEE 21th

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4949-9/18/10. . . $15.00
https://doi.org/10.1145/3239372.3239396

International Conference on Model Driven Engineering Languages and Systems

(MODELS ’18), October 14–19, 2018, Copenhagen, Denmark. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3239372.3239396

1 INTRODUCTION

Run-time verification (RV) [31] is a verification technique used for
checking the correctness of an execution of a system with respect to
a specification. The checking procedure (represented by a monitor

program) can be performed during the actual system execution (a
settings called online monitoring) or by analyzing a log of recorded
events produced by the system (a settings called offline monitoring

or offline trace checking).
Among the many approaches for run-time verification [4], our

previous work on model-driven trace checking [17]—developed as
part of a research project in collaboration with our public-service
partner CTIE (Centre des technologies de l’information de l’Etat,
the Luxembourg national center for information technology)—was
focused on model-driven run-time verification of business pro-
cesses [16]. Our approach checks properties expressed in TemPsy

(Temporal Properties made easy) [11, 17], a pattern-based domain-
specific language for the specification of temporal requirements.
The approach, implemented in the TemPsy-Check tool [18], re-
lies on an optimized mapping of temporal requirements written in
TemPsy into Object Constraint Language (OCL) constraints on a
meta-model of execution traces. More specifically, it reduces the
problem of checking a temporal property over an execution trace
to the evaluation of an OCL constraint (derived from the property
to check and semantically equivalent to it) on an instance of the
trace meta-model.

Run-time verification tools (more specifically, monitors) yield
a verification verdict (for short, verdict) after checking a property
over an execution trace: the verdict is a truth value from some truth
domain [31]. In the case of offline trace checking, typically the
verdict is boolean (true/false). When the verdict is false, a software
engineer needs to diagnose the property violations found in the
trace in order to understand their cause and, if needed, decide
for corrective actions to be performed on the system. However,
a boolean verdict may not be informative enough to perform trace

diagnostics. For example, let us consider the following temporal
property, informally stated in English: “it is always the case that
if event A occurs then it should stimulate, within 5 time units, the
sequential occurrence of events B followed, within 2 time units, by
C”; it corresponds to a time-constrained response chain pattern [2].
This property can be violated for various reasons, such as:
• there is at least an occurrence of A not followed by the se-
quence of events B-C;
• there is at least an occurrence of A that is followed by the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/162022731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3239372.3239396
https://doi.org/10.1145/3239372.3239396

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Wei Dou, Domenico Bianculli, and Lionel Briand

sequence of events B-C but B occurs after more than 5 time
units since the last occurrence of A;
• there is at least an occurrence of A that is followed by the
sequence of events B-C but C occurs after more than 2 time
units since the occurrence of B.

Just yielding a boolean verdict for reporting a violation in the
example above would be inadequate, since a boolean value in this
case does not provide any useful information about the cause of
the violation.

Despite their intrinsic limitations, boolean verdicts are used
by state-of-the art tools [5, 7, 10, 33, 37] for offline trace checking,
including our own TemPsy-Check. Some tools also pinpoint the last
log entry (i.e., the last event) read before discovering the violation;
however, the usefulness of this information is limited, because the
last read event might not necessarily be the event responsible for
the violation or, as shown above, because a requirement could be
violated in different ways.

The goal of this paper is to provide a practical and scalable
solution to solve the trace diagnostics problem, in the settings of
model-driven trace checking of pattern-based temporal properties.
Similarly to our previous work on model-driven trace checking [17],
such a solution is constrained by the requirements determined by
the type of context in which this work is set: R1) to be viable in
the long term, any procedure shall rely on standard MDE (model-
driven engineering) technology—in our context tools implementing
OMG specifications; R2) any procedure shall be scalable and enable
diagnostics of violations in large traces within practical time limits,
such that the violations in a trace with millions of events could be
processed within seconds.

Requirement R1 comes from our industrial partner, which uses
a software development methodology that requires all solutions
to adhere to OMG specifications. Although originating from the
necessities of our partner, we assume that this requirement can
be generalized to other contexts in which MDE is a mainstream
practice within the software development process. Requirement R2
originates from the need to process arbitrarily sized logs within
practical time limits, to make the use of trace diagnostics an enabler
for performing timely corrective actions.

The trace diagnostics technique proposed in this paper leverages
the pattern-based, flat (i.e., without operator nesting) structure of
temporal properties expressed in TemPsy for the precise characteri-
zation of the violations that can occur with each type of property.
Based on this characterization, the key idea is to retrieve, from
a trace that violates a property, the diagnostic information that
describes the violations admitted by the specific type of property.
The technique follows a model-driven approach, based on the trace
meta-model defined in our previous work [17]: it uses OCL queries

defined on the trace model to analyze violations and collect diag-
nostic information. The queries are supported by a set of auxiliary
OCL functions and optimized based on the structure of the targeted
TemPsy property for achieving better performance.

We have implemented the approach proposed in this paper in
a publicly available tool [12, 13]. Furthermore, we have developed
an interactive visualization tool that provides a graphical visualiza-
tion of the diagnostic information collected by TemPsy-Report, to
support a better understanding of violations.

We evaluated the scalability of our TemPsy-Report tool by study-
ing how the execution time varies depending on the trace length,
the number of violations to diagnose, and the violation and prop-
erty type. We used a benchmark of TemPsy properties based on real
requirements extracted from our case study, on traces with length
ranging from 100K to 1M. The results show that TemPsy-Report
is able to collect diagnostic information from large traces (with
one million events) in less than ten seconds; it scales linearly with
respect to the length of the trace and keeps approximately constant
performance as the number of violations increases.

To summarize, the main contributions of this paper are: i) a
model-driven approach for trace diagnostics of pattern-based tem-
poral properties expressed in TemPsy, which relies on the evaluation
of OCL queries on an instance of a trace meta-model; ii) a publicly
available tool TemPsy-Report, implementing the trace diagnostics
procedure; iii) an evaluation of the scalability of TemPsy-Report,
when applied to the diagnostics of violations of real properties de-
rived from a case study of a complex information system developed
and used by the Luxembourg government.

The rest of the paper is structured as follows. Section 2 provides
some background information about the TemPsy language. Section 3
presents a classification of violations for the patterns supported
by TemPsy. Section 4 illustrates TemPsy-Report, our model-driven
procedure for trace diagnostics. Section 5 describes tool support.
Section 6 reports on the evaluation of the scalability of the TemPsy-
Report tool. Section 7 discusses related work. Section 8 concludes
the paper and gives directions for future work.

2 BACKGROUND: THE TEMPSY LANGUAGE

TemPsy [11, 17] is a pattern-based, domain-specific language for the
specification of temporal properties. It has been developed based
on the analysis of the requirements of various applications imple-
menting business process models in the context of eGovernment
systems [16]. The analysis established that all the requirements of
the case study could be expressed as temporal properties by using
the property specification patterns proposed by Dwyer et al. [19],
with some additional expressions. The resulting language supports
the eight patterns (“absence”, “universality”, “existence”, “bounded
existence”, “precedence”, “response”, “precedence chain”, “response
chain”) and the five scopes (“globally”, “before”, “after”, “between-
and”, “after-until”) defined in [19]; patterns represent high-level
abstractions of formal specifications while scopes indicate the por-
tions of a system execution in which a certain pattern should hold.
The new extensions introduced by TemPsy are: (1) the possibility,
in the definition of a scope boundary, to refer to a specific occur-
rence of an event; (2) the possibility to indicate a time distance
with respect to a scope boundary; (3) support for expressing time
distance between occurrences in the precedence and response pat-
terns (hereafter collectively called order patterns) as well as their
chain versions; (4) additional variants for the bounded existence
and absence patterns.

For space reasons, we only explain TemPsy informally; we refer
the reader to the extended version [15] of our previous work [17]
for a more complete and formal treatment. A TemPsy property
includes two main entities: a scope and a pattern; both are denoted
by keywords with an intuitive syntax. Properties cannot be nested.

Model-Driven Trace Diagnostics for Pattern-based Temporal Specifications MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Events used in properties are alphanumeric strings, matching the
event names logged in the execution trace on which the properties
specified in TemPsy are meant to be checked. TemPsy properties
may contain time distances (both between events and from scope
boundaries); time distances are expressed with an integer value,
followed by the ‘tu’ keyword, which represents a generic system
time unit (i.e., any denomination of time) as suggested in [30]).
Chains of events, used in order patterns, are defined as comma-
separated list of events, possibly with a time distance between each
pair of events (denoted with the ‘#‘ symbol).

As an example, the property “Event B shall happen at least 4
time units before the third occurrence of event Y ” is expressed in
TemPsy as “before 3 Y at least 4 tu eventually B”.

The semantics of patterns in TemPsy is defined as follows:
Universality. An event should occur across the entire execu-

tion trace; the corresponding keyword is always.
Existence. The existence pattern can be expressed in four vari-

ants, using the following syntax: “eventually [(at least | at
most | exactly) m] A”, where the brackets indicate an optional part
and the vertical bar represents an alternative. The basic variant
indicates that event A will eventually happen at least once; the
other three variants are used to express a bounded existence pat-
tern, which indicates that eventAwill eventually happen at least/at
most/exactly m times.

Absence. In addition to stating that a certain event never occurs
in the given scope, TemPsy makes also possible to specify that a
specific number of occurrences of the same event should not happen,
as in “never exactly 2 A”, which indicates that A should never
occur exactly twice.

Precedence. This pattern indicates the precondition relation-
ship between a pair of events (respectively, the two blocks of a
chain). A block of an event chain can be either an atomic event or a
sequence of individual events with optional constraints on the time
distance between two consecutive events within the block. In this
pattern, the occurrence of the second event (respectively, block)
depends on the occurrence of the first event (respectively, block).
Based on this definition, we added support for timing information
to enable expressing the time distance between two adjacent events.
For example, the pattern “A preceding at most 5 tuB, #at least
2 tu C” indicates that the event A is the precondition of the block
“B followed byC”. In this pattern, A (left-hand side of ‘preceding’)
represents the first block, while the expression “B, #at least 2
tu C” represents the second block. The time distance between the
two blocks, specified right after ‘preceding’ and equivalent to the
distance between the timestamp of the first element of the second
block (i.e., B) and the last element of the first block (i.e., A), should
be at most 5 (time units). The time distance between a specific pair
of consecutive events in the same block (denoted with a # symbol),
in this case B and C , should be at least 2.

Response. This pattern specifies the cause-effect relationship
between a pair of events (respectively, the two blocks of a chain) in
which the occurrence of the first event (respectively, block) leads to
the occurrence of the second event (respectively, block). Similarly
to precedence, we added support for timing information to enable
expressing the time distance between two adjacent events.

3 CHARACTERIZATION OF TEMPSY
VIOLATIONS

At the basis of our model-driven approach for trace diagnostics
there is a precise characterization of the violations that can oc-
cur with each type of property. Since TemPsy does not allow for
arbitrary nesting of temporal expressions (i.e., the structure of tem-
poral properties in TemPsy is flat), such a characterization yields a
finite set of possible violations, which can be uniquely associated
with each type of property. In the following, we describe the dif-
ferent violation types that characterize TemPsy properties. In the
examples, we represent an execution trace as a list (denoted with
brackets) of trace elements; each trace element is a pair (denoted
with parentheses) consisting of the event name and a timestamp.

UNOC UNexpected OCcurrence. This type of violation is triggered
by unexpected occurrences of the event specified in an absence or
existence pattern.
The original version of the absence pattern, by definition, is violated
by any occurrence of the event specified in the pattern. The variant
of the absence pattern having exactly as comparison operator
triggers this violation type when the number of event occurrences
in the trace is equals to the number specified in the pattern.
As for the existence pattern, the two variants with at most/exactly
in the constraint on the number of occurrences are violated when
the bound is exceeded because of an unexpected occurrence. For in-
stance, given the trace [(A, 2), (A, 3), (A, 5)] and the TemPsy property
“globally eventually at most 2 A”, the third trace element is
unexpected with respect to the existence pattern (which in this case
sets a bound of at most two occurrences of A) and hence triggers a
UNOC violation.

NSOC No-Show OCcurrence. This type of violation is the dual of
UNOC: it is triggered upon detecting a missing occurrence of the
event specified in a universality or existence pattern.
In the case of a universality pattern, an NSOC violation is triggered
whenever a trace element does not match the event specified in the
pattern.
In the case of an existence pattern, the basic variant and the ones
with exactly/at least in the constraint on the number of occur-
rences are violated when the actual number of occurrences of the
event is less than the lower bound specified in the property. For
example, the TemPsy property “globally eventually at least
2 A”, when checked on the trace [(A, 2), (B, 3), (B, 5)], yields an
NSOC violation because the number of occurrences of eventA is less
than two.

NSOR No-Show ORder. This type of violation is triggered while
checking an order pattern, when one of the two blocks of events
does not occur according to the order defined by the pattern. For
instance, the TemPsy property “globally A preceding B”, when
checked on the trace [(b, 2), (a, 3), (c, 5)], gives an NSOR violation be-
cause there is no occurrence of eventA that precedes an occurrence
of event B.

WTO Wrong Temporal Order. This type of violation is specific to
an order pattern that contains a constraint on the time distance
between the two blocks of the pattern; it is triggered when this
constraint is violated. For example, the trace [(A, 2), (B, 6), (C, 15)]
violates the property “globally A, #at least 3 tu B preceding
at most 2 tu C” and yields a WTO because the distance between

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Wei Dou, Domenico Bianculli, and Lionel Briand

the two blocks—i.e., the difference between the timestamp of the
first element of the second block (15, for C) and the timestamp
of the last element of the first block (6, for B)—is more than the
prescribed bound of 2 time units.

WTC Wrong Temporal Chain. This type of violation is specific to
an order pattern that contains at least one constraint on the time
distance between two consecutive events in one of the two blocks;
it is triggered when such a constraint is violated. For instance, the
trace [(A, 2), (B, 3), (C, 5)] violates the property “globally A, #at
least 3 tu B preceding C” because, though C is preceded by
the event chain A,B, the distance between event A and B (3-2=1
time unit in this case) is less than the prescribed lower bound (3
time units); a WTC violation is then triggered.

WTOC Wrong Temporal Order and Chain. This type of violation is
specific to an order pattern that contains both a constraint on the
distance between the two blocks and at least one constraint on the
distance between two consecutive events in one of the two blocks.
It is triggered when both types of constraints are violated; in other
words, this violation combines (and supersedes) the WTO and WTC
violations when both occur within the same property.
For instance, the trace [(A, 2), (B, 3), (C, 9)] violates the property
“globally A, #at least 3 tu B preceding at most 2 tu C”
and yields a WTOC because 1) the distance between events A and B
in the first block (1 time unit) violates the constraint “at least
3 tu”, and 2) the distance between the two blocks (6 time units)
violates the constraint “at most 2 tu”.

4 MODEL-DRIVEN TRACE DIAGNOSTICS

Our technique for trace diagnostics is based on the idea of retrieving,
from a trace λ that violates a property ρ, the diagnostic information
that is associated with the possible violations admitted by ρ, as
determined by the characterization of TemPsy violations presented
in the previous section. Notice that we expect the trace diagnostics
to be run after performing trace checking (for example, by means
of TemPsy-Check [18]): this is why we assume that λ is known to

violate ρ.
The technique follows a model-driven approach, to fulfill re-

quirement R1 stated in Section 1. More specifically, we use the
meta-model for traces introduced in our previous work [17]; we
define OCL queries on this meta-model to analyze violations and
collect diagnostic information. The queries are supported by a set of
auxiliary OCL functions, which are optimized based on the structure
of the targeted TemPsy property for achieving better performance
when processing large traces, with a huge number of events.

4.1 Overview of the approach

We recall that our meta-model for traces contains a class Trace,
which is composed of a sequence of TraceElements; each Trace-
Element is represented by a pair (event, timestamp), whose
elements correspond to the actual event recorded in the trace and
the time at which it occurred. One of the attributes of class Trace
is properties, which is a collection of TemPsyExpressions, rep-
resenting the TemPsy properties to analyze for trace diagnostics.
More details on this meta-model are available in [17].

The approach takes as input a log file (i.e., a trace) and a set of
TemPsy properties for which to compute the diagnostics; the input

1 let property:TemPsy :: TemPsyExpression =
2 self.properties ->at(POS),
3 subtraces:Sequence(Tuple(begin:Integer ,
4 end:Integer)) =
5 applyScope(property.scope)
6 in subtraces ->iterate(
7 subtrace:Tuple(begin:Integer ,end:Integer);
8 result:Sequence(Tuple(begin:Integer , end:

Integer ,violations:OclAny)) = Sequence {} |
9 let newViols:OclAny = diagInf(subtrace.begin ,

subtrace.end , property.pattern) in
10 if newViols ->notempty () then
11 result ->append(
12 Tuple{begin:Integer = subtrace.begin ,
13 end:Integer = subtrace.end ,
14 violations:OclAny = newViols })
15 else result endif)

Figure 1: The template for OCL queries on a trace for collect-

ing diagnostic information

trace is converted to an instance of class Trace, while the properties
are converted to instances of the TempsyExpression class.

At the core of our approach there is the evaluation of OCL queries
on the instance of the Trace class, to collect diagnostic information
from the trace instance based on the TemPsy properties to analyze.
These queries follow the template shown in Figure 1: for a given
TemPsy property provided in input, they apply the semantics of
the pattern used in the input property on a set of sub-traces, as
defined by the scope used in the property. Through the application
of the pattern semantics, the query collects the relevant diagnostic
information, specific to the type(s) of violations found. More in
detail, the expression at lines 6–15 iterates through each sub-trace
to collect diagnostic information. In each iteration, if a violation
is found in the sub-trace, a new triple that contains the diagnostic
information is collected (and appended to the sequence result,
see lines 11–14). Each triple consists of two integers (begin and
end), which indicate the boundaries of each trace segment, and
the diagnostic information for the violation (violations). This
information has type OclAny since the actual data type varies based
on the type of violation that is found.

The template in Figure 1 contains three placeholders, POS, apply-
Scope, and diagInf, which are underlined in the “let” clauses.
Placeholder POS represents a positive integer, used by the attribute
self.properties (through the function at) to access the TemPsy

property to be analyzed (from the set of input properties). Place-
holder applyScope (at line 5) represents an auxiliary function that
takes the scope used in the property (accessed through the expres-
sion property.scope) as input and returns a list of sub-traces, each
of which is denoted by the positions of the two boundaries, as de-
fined by the scope semantics. Depending on the type of the scope,
there are five auxiliary functions to substitute for the placeholder:
applyScopeGlobally, applyScopeBefore, applyScopeAfter, ap-
plyScopeBetweenAnd, and applyScopeAfterUntil. The definition
of these functions is not included in this paper since it is identi-
cal to the one presented in our previous work [17]. Placeholder
diagInf (at line 9) represents an auxiliary function that takes as

Model-Driven Trace Diagnostics for Pattern-based Temporal Specifications MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Algorithm 1: diagInfExistence
Input: begin, end: the boundaries of a sub-trace; pattern: an

instance of the existence pattern of the form
“eventually [op n] E”

Output: result: a pair which contains a violation type and a
list of locations related to the violation

1 E ← event name in pattern

2 op← comparison operator of the bound on the number of
occurrences of event E

3 n ← threshold of the number of occurrences of event E
4 result ← null, locations← []
5 for i ← begin to end do

6 if self .traceElements[i] = E then

7 locations.append(i)

8 count ← locations.size()
9 if op , null then

10 if count < n && op , “at most” then
11 result ← (NSOC, locations)

12 else if count > n && op , “at least” then
13 result ← (UNOC, locations[n + 1, count])

14 else if count = 0 then result ← (NSOC, [])

15 return result

input the two boundaries of a sub-trace and the pattern used in
the property (accessed through the expression property.pattern)
and returns the diagnostic information about the violations found
in the sub-trace for the pattern given in input. There are five func-
tions to substitute for this placeholder: diagInfUniversality,
diagInfExistence, diagInfAbsence, diagInfPrecedence, and
diagInfResponse. The complete definitions in OCL of these func-
tions are available in the first author’s PhD thesis [11, Chapter 4].
For space reasons, in the following subsections we illustrate only
two of these functions; for readability and conciseness, all the code
snippets presented are written using OCL pseudocode.

4.2 Diagnostics for the “Existence” pattern

The function for collecting diagnostic information for the existence
pattern is shown in Algorithm 1. The function takes as input the
boundaries of a sub-trace and an instance of the existence pattern
of the form “eventually [op n] E”, and returns a pair that con-
tains the type of violation and a list of locations with events related
to the violation. After reading the parameters E, op, and n from
the instance of the existence pattern (lines 1–3), the function ini-
tializes the variable result (storing the output value) to null and
the auxiliary variable locations to an empty list. The latter is then
populated with all the locations in the sub-trace in which event E
occurs (loop at lines 5–7). Then, depending on the threshold n of
the bound on the number of occurrences of event E, the function
determines the violation type and the occurrences that trigger the
violation (lines 9–15).

As described in Section 3, when an existence pattern is violated,
it can yield either a UNOC or NSOC violation type, depending on the
variant of the pattern. If the variant of the existence pattern has a

comparison operator, then the procedure checks which violation
should be triggered. More precisely, if the comparison operator
is either “at least” or “exactly” (line 10) and the number of
occurrences of E is less than n, then the violation type will be NSOC
and the list of locations will contain all the locations in which event
E occurs (line 11); the latter are selected because they represent the
“fragment” in the sub-trace in which the missing occurrence(s) of E
was supposed to appear. Otherwise, if the number of occurrences
of event E is more than n and the comparison operator is either
“at most” or “exactly” (line 12), then the violation type will be
UNOC and the list of locations will contain all the locations with
the “extra” occurrences of event E, i.e., all the locations after the
n-th occurrence of event E (line 13). If the existence pattern is in
its basic variant (i.e., with no explicit constraint on the number of
occurrences), if there is no occurrence of event E in the sub-trace,
then the violation type is set to NSOC, with an empty list of locations
related to the violation (line 14). The function ends by returning
the value of variable result.

4.3 Diagnostics for the “Precedence” pattern

Function diagInfPrecedence (Algorithm 2) defines the algorithm
for the variant of the precedence pattern that contains no time
constraint on the distance between the two blocks. The function
takes as input the two boundaries of a sub-trace and an instance of
the precedence pattern of the form “block1 preceding block2”. We
recall that both blocks of the pattern can be either an atomic event
or a chain of events with optional constraints on the time distance
between two consecutive events within the block. The function
returns a list of triples, each of which contains a violation type, the
location of the occurrence of block2 related to the violation, and
the location of the corresponding occurrence of block1.

After reading block1 and block2 from the instance of the prece-
dence pattern (line 1), the function initializes (lines 2–6) variable
result (storing the return value) to an empty list and some auxiliary
variables: size1 and size2 store, respectively, the size of block1 and
of block2; firstOfBlock1 and firstOfBlock2 contain the first event de-
fined, respectively, in block1 and block2; the tuple (i1, t1) and (i2, t2)
are used to track whether the trace element being matched is part
of an occurrence of block1 (respectively, block2): the first element
of the tuple stores the position within the block of the next event to
be matched while the second tuple element stores the timestamp of
the previous trace element matched at position block1[i1 − 1] and
block2[i2−1], respectively; variable flag is used to track whether the
ongoing match of block1 is consistent with the distance constraints
(if defined) within the block; variable lw contains the location of
the last occurrence of block1 that was found to violate the time
constraints within the block.

As presented in Section 3, when a precedence pattern with no
time constraint on the distance between the two blocks is violated,
it can yield either a NSOR or a WTC violation type; the latter case
can occur only if block1 contains a distance constraint1. The body
of function diagInfPrecedence is mainly constituted by a loop
that traverses the input sub-trace, trying to match each trace ele-

1Based on the semantics of the precedence pattern [11], if block2 contains a distance
constraint that is violated it will not be matched, i.e., it will not be considered an “effect”
that must be preceded by a “cause” (represented by block1).

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Wei Dou, Domenico Bianculli, and Lionel Briand

Algorithm 2: diagInfPrecedence
Input: begin, end: the boundaries of a sub-trace; pattern: an

instance of the precedence pattern of the form “block1
preceding block2”

Output: result: a list of triples, each of which consists of a
violation type, the location of the occurrence of
block2 related to the violation, and the location of the
corresponding occurrence of block1

1 block1, block2 ← read the blocks from pattern

2 result ← []

3 size1, size2 ← the sizes of block1 and block2

4 firstOfBlock1← block1.first().event, firstOfBlock2 ←
block2 .first().event

5 (i1, t1) ← (1, 0), (i2 , t2) ← (1, 0)
6 flag ← true, lw ← 0
7 for i← begin to end do

8 elem← self .traceElements[i],
(e, t) ← (elem.event, elem.timestamp)

9 if e = firstOfBlock1 then (i1, t1, flag) ← (2, t , true)
10 else if i1 > 1 then (i1, t1, flag) ←

matchSecondaryBlock(block1, (i1, t1, flag), (e , t))

11 if lw > 0 && !flag then (i1, t1) ← (1, 0)
12 else if i1 = size1 + 1 then
13 if flag then break
14 else

15 lw ← i

16 (i1, t1) ← (1, 0), (i2 , t2) ← (1, 0)

17 if e = firstOfBlock2 then (i2 , t2) ← (2, t)
18 else if i2 > 1 then (i2 , t2) ← match(block2 , i2 , t2 , (e , t))

19 if i2 = size2 + 1 then
20 if lw = 0 then v ← (NSOR, i, null)

21 else v ← (WTC, i, lw)

22 result.append(v)
23 (i1, t1) ← (1, 0), (i2 , t2) ← (1, 0)

24 return result

ment between begin and end with block1[i1] (lines 9–16) and with
block2[i2] (lines 17–23). Two local variables e and t are used in each
iteration to store the event name and timestamp of the current trace
element (line 8).

If the trace element is a match for the first event of block1 (line 9),
the function sets the position i1 to 2, assigns the timestamp of the
trace element to t1, and resets the flag to true. Otherwise, if vari-
able i1 is greater than 1, the function invokes the auxiliary func-
tion matchSecondaryBlock to check whether the current trace
element is part of block1 (line 10). Function matchSecondaryBlock
(not shown here for space reasons), when invoked with input
(block1, (i1, t1,flag), (e, t)) returns the tuple (i1+1, t ,flag && true)
if the trace element is a valid match for block1[i1]; it returns the tu-
ple (i1 + 1, t ,flag && false) if the trace element matches the event
defined at block1[i1] but violates the constraint on the distance
between block1[i1 − 1] and block1[i1]; it returns the tuple (1, 0,flag)

otherwise. At line 11, the function continues to check whether
the matched event is part of an invalid occurrence of block1. If
there is already an invalid occurrence of block1 (i.e., lw > 0) and
the matched event violates the constraint on the distance between
block1[i1 − 1] and block1[i1], the algorithm resets the tuple (i1, t1)
(line 11). If it is not the case and block1 is fully matched, if vari-
able flag1 is true, the function stops the collection of diagnostic
information (line 13); otherwise, the variable lw is updated with
the position i of the current invalid occurrence of block1 (line 15)
and the variables i1, t1, i2, t2 are reset (line 16).

As an example, given the trace [(A, 2), (B, 6), (C, 15)], begin = 1,
end = 3, and (a property with) the precedence pattern “A, #at
least 3 tu B preceding C”, the function will execute the
following main steps: 1) when i is 1, (i1, t1,flag) is set to (2, 2, true)
(line 9), since the first trace element matches the first event of
block1; 2) when i is 2, (i1, t1,flag) is set to (3, 6, true) (line 10) and
breaks the loop at line 13, since the function finds a match of block1.
Notice that the rest of the iteration does not impact the matching
of block1.

If the function has not yet found a valid occurrence of block1,
in the remainder of the iteration, it checks whether the current
trace element is part of an occurrence of block2 (lines 17–23). If an
occurrence of the first event of block2 is detected, the variable i2
is set to 2 and variable t2 is set to the timestamp of current trace
element (line 17). Otherwise, if variable i2 is already greater than
1, the algorithm calls function match to match the current trace
element with block2[i2] (line 18).

The algorithm reports a violation (lines 19–23) when block2 is
completely matched. More specifically, if an invalid occurrence of
block1 has not yet been found (i.e., lw is still 0), it means that the
pattern is violated because the occurrence of the second block is
not matched by an occurrence of the first block; hence, an NSOR
violation type is reported, together with the location of the current
trace element (indicating the occurrence of block2 just matched)
and the null value indicating there is no corresponding occurrence
of block1 (line 20). Otherwise, a WTC violation type is reported, with
the location of the current trace element (indicating the occurrence
of block2 just matched), and the location lw of the corresponding
invalid occurrence of block1 (line 21). The diagnostic information
is then added to variable result (line 22) and the tuples (i1, t1) and
(i2, t2) are reset (line 23). After analyzing the entire sub-trace, the
function ends by returning variable result (line 24).

5 TOOL SUPPORT

We have implemented our model-driven procedure for trace diag-
nostics in the tool TemPsy-Report, publicly available [12, 13]. This
tool extends the implementation of our tool TemPsy-Check [18]
and is also based on Eclipse OCL [20]. The tool works as follows:
given a trace and a set of TemPsy properties (previously determined,
by TemPsy-Check, as violated on the input trace), TemPsy-Report
builds OCL queries following the template shown in Figure 1, de-
pending on the type of the scope and pattern used in each TemPsy

property. We have implemented all the OCL functions (defined on
class Trace) for TemPsy scopes and patterns as described in the
previous subsection, to collect diagnostic information. The evalu-
ation of the OCL queries is done through the evaluate function

Model-Driven Trace Diagnostics for Pattern-based Temporal Specifications MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Figure 2: Screenshot of our visualization tool for TemPsy
trace diagnostics

provided by Eclipse OCL. TemPsy-Report produces a textual ver-
sion of the diagnostic information and also saves the latter in a
document-based MongoDB [28] database, for further processing.

The textual version of the diagnostic information is quite com-
plex and can be cumbersome to inspect, especially when a violation
can be triggered by different causes. For this reasons, we have
developed an interactive visualization tool for trace diagnostic in-
formation, publicly available [14]. The tool is implemented as a
Web application using JavaScript Charts [1], Meteor.js [25], Angu-
larJS [24], and ElasticSearch [21].

The visualization tool loads the diagnostic information saved
by TemPsy-Report in the MongoDB database. It displays the trace
using a chart component; a data point in the chart corresponds to
a trace element. The tool UI includes several features to provide an
easy and useful diagnostics session: showing the details of a trace
element when hovering over its data point; zooming the trace in
and out with an adaptive granularity of the data points; navigating
the trace horizontally; navigating the list of violations; marking the
occurrences of events related to a violation; highlighting the reason
of a violation. Some of these features are shown in the screenshot
in Figure 2: on the left side, there is a navigable list of the violations
found in the trace; the red callout on the right side shows the details
(e.g., the timestamp) for an event related to the violation; in the top
part, the red marking in the property text highlights the constraint
that was violated.

6 EVALUATION

As stated by requirement R2 in Section 1, our solution for model-
driven trace diagnostics is expected to support very large traces,
withmillions of events, such that violations in the trace could be pro-
cessed within seconds. To check the fulfillment of this requirement,
we evaluated the scalability of TemPsy-Report by investigating the
relation between the execution time and some structural properties
of a trace, such as the length and the number of violations. More
specifically, we consider the following research questions:

RQ1) What is the relation between the execution time of TemPsy-

Report and the length (i.e., number of logged events) of a trace?

RQ2) What is the relation between the execution time of TemPsy-

Report and the number of violations (with respect to a given TemPsy

property) contained in a trace?

Table 1: TemPsy properties used for the evaluation

P1: globally always A
P2: globally never B
P3: globally eventually at least 2 A
P4: globally eventually at most 3 A
P5: globally A responding at most 1000 tu B
P6: globally A responding exactly 1000 tu B
P7: globally A preceding at most 6000 tu B
P8: globally A preceding at least 100 tu B
P9: globally A preceding exactly 100 tu B
P10: globally A, B preceding at least 1000 tu C , D
P11: globally A responding at least 1000 tu B , C
P12: globally A responding B

6.1 Benchmark and Settings

Benchmark. The benchmark for evaluating TemPsy-Report is con-
stituted by a set of TemPsy properties and by a set of traces.

As for the properties, we employed the ones already used in our
previous work [17], extracted from the requirements specification
documents of an eGovernment application developed by our partner.
Since we focus on the scalability of the trace diagnostics procedure,
we considered the 12 (out of 47) properties that use the globally
scope: the semantics of this scope guarantees that a pattern is
analyzed through the entire length of the trace. These properties
are shown in sanitized form in Table 1; for confidentiality reasons,
we only keep the structure of each property, in terms of scope +
pattern, and denote events with uppercase letters.

Regarding the traces, as already done in [17], we used synthesized
traces, to cover a large spectrum of lengths while having a great,
controlled diversity in terms of occurrences of violations in the
traces. More specifically, by using synthesized traces we were able
to control in a systematic way the factors (i.e., trace length, number
and type of violations) required to answer the research questions,
while setting other factors (e.g., distance between events) randomly,
to avoid any bias.

We synthesized these traces using a trace generator program,
which we also implemented. This program takes in input a TemPsy

property and configuration options, and generates traces that vio-
late the input property. The generator avoids bias by distributing
the (events leading to) violations evenly, assigning them random
positions within the slots determined by the input parameters, such
as the trace length and the number of violations. The position and
the order of the events related to a violation are generated randomly
by taking into account the temporal and timing constraints pre-
scribed by the semantics of the pattern used in the input property.
Positions in the trace that are not related to the property are filled
with a dummy, irrelevant event. In the following we briefly describe
the trace generation strategy for each pattern; next to each pattern
name, we also indicate the corresponding properties from Table 1.

Universality (P1). There is only one possible violation type for
this type of pattern: NSOC. The generator first randomly generates
the violation positions and then inserts in them a dummy event; all
the other positions will have the event indicated in the property.

Existence (P3, P4). The trace generation strategy depends on the
bound indicated in the property, in terms of comparison operator
and bound valuem.
If the bound is expressed as “at leastm” (as in property P3), the
violations will be of type NSOC; the number of their occurrences (i.e.,

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Wei Dou, Domenico Bianculli, and Lionel Briand

the number of occurrences of the event indicated in the property)
is set to the minimum betweenm − 1 and the value of the input
parameter “number of violations”. If the bound is expressed as “at
mostm” (as in property P4), the violations will be of type UNOC. The
number of the occurrences of the event indicated in the property
is set to the maximum betweenm + 1 and the value of the input
parameter “number of violations”. In both cases, the position of
these events is set randomly; all other positions in the trace are
filled with a dummy event. A similar process is followed for the
other variants of the pattern, not used in our benchmark.

Absence (P2). This pattern can only be violated by triggering
UNOC violations. The generator first randomly generates the viola-
tion positions and then inserts in them the event indicated in the
property (e.g., B in the case of P2); all the other positions will be
filled with a dummy event.

Precedence (P7–P10). For this type of properties, there may be
more than one type of violations, depending on the structure of
the pattern; to avoid any bias, the generator takes as input also the
violation type to be generated and produces a set of traces contain-
ing only the required violation type. For example, all properties
P7–P10 can lead either to NSOR or to WTO violations.
Given the number of violations n as parameter, the generator first
divides the trace into n segments with the same length, and then
randomly inserts a specific violation into a position within each
segment, taking into account the distance constraints prescribed
by the pattern. For example, to generate n NSOR violations, the
generator produces n occurrences of the second block (e.g., the
event chain “C,D” for property P10), without inserting the match-
ing occurrences of the first block. To generate n WTO violations,
the generator produces n pairs of the two blocks indicated in the
property, making sure that their positions in the trace violate the
constraint on the time distance between them. The strategy for
choosing the value of the distance between the two blocks depends
on the type of the comparison operator used in the distance con-
straint. If the bound is expressed as “at mostm” (as in property
P7), the distance is randomly generated using a uniform distribu-
tion on the range [m + 1,m ∗ 1.1]; if the bound is expressed as “at
leastm” (as in properties P8 and P10), the distance is randomly
generated using a uniform distribution on the range [1,m − 1]; if
the bound is expressed as “exactly m” (as in property P9), the
distance is randomly generated using a uniform distribution on the
range [1, . . . ,m − 1,m + 1, . . . ,m ∗ 1.1]. A similar strategy is used
to generate violations of type WTC and WTOC.

Response (P5–P6, P11–P12). The trace generation for this pat-
tern is similar to the one described above for the precedence pattern,
taking into account that response is the dual of precedence. Also in
this case, the generator takes as input the violation type to be gen-
erated and produces a set of traces that contains only the required
violation type. For example, properties P5, P6, and P11 can lead
either to NSOR or to WTO violations, while P12 can lead only to an
NSOR violation.

Settings. The results reported in this section have been measured
(by invoking the System.currentTimeMillis() method of the
standard Java library) on a desktop computer with a 3GHz Intel
Dual-Core i7 CPU and 16GB of memory, running Eclipse DSL Tools
v. 4.6.0M3 (Neon Milestone 3), JavaSE-1.7 (Java SE v. 1.8.0_25-b17,

Java HotSpot (TM) 64-Bit Server VM v. 25.25-b02, mixed mode),
and Eclipse OCL v. 6.0.1. All measurements reported correspond to
the average value over 100 runs of the trace diagnostics procedure
(on the same trace, for the same property).

6.2 Scalability Analysis

Methodology. To answer RQ1, for each property (and for each type
of violation, NSOR and WTO, in the case of properties P5–P11), we
generated ten traces with various lengths from 100K to 1M, with a
100K step increment; in the trace generator program we fixed the
number of violations2 to 1000. To answer RQ2, for each property
but P33 (and for each type of violation, NSOR and WTO, in the case of
properties P5–P11), we generated ten traces varying the number of
violations2 from 1K to 10K, with a 1K step increment; in the trace
generator program we fixed the length of the trace to 1M. In both
cases, we ran TemPsy-Report to analyze, for each property, the ten
corresponding traces.

Results. The plots in Figure 3 show the relation between the execu-
tion time of TemPsy-Report and the trace length (RQ1). The execu-
tion time of TemPsy-Report on a trace containing NSOR violations
is denoted by adding a superscript † to the property name, while a
superscript ‡ is used to indicate the execution time on a trace with
WTO violations. We split the plots into two parts (Figures 3a and 3b),
to better highlight the execution time for trace diagnostics of the
properties with a precedence pattern with a distance constraint of
the form “at least n tu” (P8 and P10).

The answer to RQ1 is that the TemPsy-Report tool scales linearly

with respect to the trace length; the execution time ranges from
about 1.5 s to 8.2 s, depending on the pattern used in the property
and the violation type in the trace.

The plots in Figure 4 show the relation between the execution
time of TemPsy-Report and the number of violations (RQ2) con-
tained in a trace. We use the same notation as above to distinguish
between NSOR and WTO violations. Also in this case, the plots for
the diagnostics of properties P8 and P10 are separated.

The answer to RQ2 is that the number of violations contained in a

trace makes no tangible impact on the execution time of the TemPsy-

Report tool, which stays approximately constant as the number of

violations increases; the execution time ranges from about 3.8 s to
8.2 s depending on the pattern used in the property and the violation
type in the trace.

We also gain additional insight by inspecting the plots in Fig-
ures 3 and 4: TemPsy-Report takes less time to collect diagnostic
information for the properties using the universality, existence, and
absence patterns (e.g., P1–P4) than for the properties using the
precedence and response patterns. Also, Figures 3b and 4b show that
the tool takes less time for analyzing traces with WTO violations
than traces with NSOR violations, when considering properties with
a precedence pattern with a distance constraint of the form “at
least n tu” (P8 and P10). This is due to the implementation of
the corresponding OCL function, which—in the worst case—has

2 In the case of the universality, absence, and existence patterns, the number of violations
actually represents the number of occurrences of a specific event that lead to a violation.
3Property P3 was not used to answer RQ2 because varying the number of violations
does not make sense from a scalability analysis standpoint: the property is violated
only when there is no occurrence or just one occurrence of event A.

Model-Driven Trace Diagnostics for Pattern-based Temporal Specifications MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00
0

2

3

4

5

Trace length (·103)

Ex
ec
ut
io
n
tim

e
(s
)

P1 P2 P3
P4 P5† P5‡

P6† P6‡ P7†

P7‡ P9† P9‡

P11† P11‡ P12

(a) P1–P7, P9, P11–P12

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00
0

2

4

6

8

Trace length (·103)

Ex
ec
ut
io
n
tim

e
(s
)

P8† P8‡

P10† P10‡

(b) P8, P10

Figure 3: Execution time of TemPsy-Report for collecting diagnostic information from faulty traces (number of violations

fixed to 1000, various lengths)

1 2 3 4 5 6 7 8 9 10

4

4.5

5

Number of violations (·103)

Ex
ec
ut
io
n
tim

e
(s
)

P1
P2
P4
P5†

P5‡

P6†

P6‡

P7†

P7‡

P9†

P9‡

P11†

P11‡

P12

(a) P1–P7, P9, P11–P12

1 2 3 4 5 6 7 8 9 10

4

6

8

Number of violations (·103)

Ex
ec
ut
io
n
tim

e
(s
)

P8† P8‡ P10† P10‡

(b) P8, P10

Figure 4: Execution time of TemPsy-Report for collecting diagnostic information from faulty traces (various numbers of

violations, trace length fixed to 1M)

to check the order of events blocks, the distance between them,
and also the distance between the individual events within a block.
Finally, the results also show that TemPsy-Report takes longer for
collecting diagnostic information for an order pattern in which the
blocks are event chains rather than single event (as in the case of
P10 and P11); again, this is due to the implementation, which has to
check for all events matching a single block and the corresponding
time constraint between the individual events in the block.

Threats to validity. The main threat to validity to the results pre-
sented above is the intrinsic presence of errors in TemPsy-Report.
We tried to compensate for this by thoroughly testing the tool with
traces and properties for which the oracle (in terms of diagnostic
information) was previously known. Another potential threat is the
fact that we have performed trace checking on synthesized traces.
Real execution traces might be different, in terms of violation types
occurring in them, due to a different distribution of event occur-

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Wei Dou, Domenico Bianculli, and Lionel Briand

rences along the traces, both in terms of order and time distance.
However, as explained at the beginning of this section, for the pur-
pose of scalability analysis synthesized traces are better than real
ones as they guarantee we have the data to perform our analysis by
controlling certain factors and varying others randomly. Another
threat is given by the use of Eclipse OCL; one could get different
results by using another OCL tool, with lower performance. We
chose Eclipse OCL for its scalability (see [36]).

Discussion. The evaluation results presented above show the feasi-
bility of applying our model-driven approach for trace diagnostics,
in realistic settings, of temporal properties expressed in TemPsy.
The tool scales linearly with respect to the length of the input trace
and keeps approximately constant performance with respect to the
number of violations contained in the trace.

The performance of our TemPsy-Report tool, which can analyze
very large traces (with one million events) in less than ten seconds,
makes it a viable technology for adoption in contexts where MDE is
the mainstream practice within the software development process.

7 RELATEDWORK

Although run-time verification (and trace checking) has been a
very active area of research in the last 15 years [4, 31], little or
no attention has been paid to the problem of trace diagnostics.
The work closest to our approach is the one by Ferrère et al. [23],
which proposes an error diagnostics algorithm for trace diagnos-
tics of Signal Temporal Logic (STL) formulae over a continuous
signal; the algorithm computes temporal implicants, i.e., small sub-
signals that are sufficient to imply violations. This algorithm has
been recently integrated into the AMT 2.0 tool [35], which sup-
ports qualitative and quantitative analysis of hybrid continuous
signals. The main difference with our approach is that AMT does
not provide a model-driven approach, which is one of the main
requirements (see Section 1) set by the context in which we have
developed TemPsy-Report; furthermore, AMT focuses on signal-
based, continuous time applications with STL specifications while
TemPsy-Report considers event-based, discrete time traces and a
restricted, pattern-based temporal specification language.

We have also surveyed the trace diagnostics support in the tools
that were contestants of the “offline monitoring” track of the 2014
and 2015 international Competition on Software for Runtime Verifi-
cation (CSRV 2014 [3] and CSRV 2015 [22]). Four of the tools (STePr,
AgMon [29], LogFire [27], OptySim [8]) are not publicly available;
another tool RiTHM-v2.0 [34], is available but does not work when
executed by following the instructions specified in the README file
on its GitHub page [39]; the remaining tools that we analyzed are:
Breach [10], MonPoly [5], QEA [37], SOLOIST+ZOT [7], and RV-
Monitor [33]. Table 2 summarizes our findings, indicating whether
a tool produces a boolean output (column “boolean”), whether it
takes into account all the (events leading to) violations in a trace
(column “positions”), whether it provides detailed diagnostic in-
formation, such as the cause of a violation (column “cause”), and
whether it is based onMDE technologies (column “MDE”). Although
all tools yield a boolean result, only few provides additional infor-
mation. Breach, which can check digitized traces against Signal
Temporal Logic (STL) specifications, provides a graphical visual-
ization of the violations in the trace.MonPoly prints out the last

Table 2: Comparison of trace diagnostics features among

trace checking/run-time verification tools

Tool boolean positions cause MDE

Breach [10] + + - -
MonPoly [5] + + - -
QEA [37] + +/- - -
SOLOIST+ZOT [7] + - - -
RV-Monitor [33] + - +/- -
AMT [35] + + + -
TemPsy-Report + + + +

log entries read before finding a violation. QEA stops checking the
trace after the first violation is found and prints the last log entry
read before finding the violation. None of these tools provide addi-
tional diagnostic information to understand the cause of a violation.
RV-Monitor does not report the position of the violations in a trace
but it allows for manually writing a violation handler to print some
user-(pre)defined diagnostic information. As seen in Table 2, only
AMT and TemPsy-Report provide detailed diagnostic information
to investigate faulty traces; however, only TemPsy-Report is a tool
based on standard MDE technologies such as OCL.

Trace diagnostics is an activity related to falsification [9], e.g.,
finding counterexamples to a system specification, and to the anal-
ysis of counterexamples in the context of model checking [6, 38].

Finally, trace diagnostics can be seen as a particular case of query
on a trace of events, as typically done in Complex Event Processing
(CEP [32]) settings; strategies for the synergetic integration of RV
and CEP are discussed by Hallé [26].

8 CONCLUSIONS

In this paper we described a model-driven approach for the diagnos-
tics of the verdicts yielded after checking a property over a trace.We
implemented our approach in TemPsy-Report, a tool that provides
detailed trace diagnostic information for pattern-based temporal
properties expressed in the TemPsy language; this information can
be displayed in an interactive visualization tool.

The evaluation of TemPsy-Report shows that it can collect
diagnostic information from large traces (with onemillion events) in
less than ten seconds. TemPsy-Report scales linearly with respect
to the length of the trace and is not affected by the the number of
violations contained in the trace.

As part of future work, we plan to conduct a user study to assess
how TemPsy-Report can support developers while performing
fault localization, by providing useful diagnostic information.

ACKNOWLEDGMENTS

This work has received funding from the European Research Coun-
cil under the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No 694277), from the Luxem-
bourg National Research Fund (FNR) (grant No FNR/P10/03), and
from the University of Luxembourg (grant “MOVIDA”).

Model-Driven Trace Diagnostics for Pattern-based Temporal Specifications MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

REFERENCES

[1] amCharts. 2018. JavaScript Charts. Retrieved July 18, 2018 from https://www.
amcharts.com

[2] Marco Autili, Lars Grunske, Markus Lumpe, Patrizio Pelliccione, and Antony
Tang. 2015. Aligning Qualitative, Real-Time, and Probabilistic Property Specifi-
cation Patterns Using a Structured English Grammar. IEEE Trans. Softw. Eng. 41,
7 (2015), 620–638.

[3] Ezio Bartocci, Borzoo Bonakdarpour, and Yliès Falcone. 2014. First International
Competition on Software for Runtime Verification. In Proc. RV 2014. LNCS,
Vol. 8734. Springer, Heidelberg, Germany, 1–9.

[4] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. 2018. Introduc-
tion to Runtime Verification. In Lectures on Runtime Verification - Introductory

and Advanced Topics. LNCS, Vol. 10457. Springer, Cham, Switzerland, 1–33.
[5] David Basin, Matúš Harvan, Felix Klaedtke, and Eugen Zălinescu. 2012. MON-

POLY: Monitoring Usage-Control Policies. In Proc. RV 2011 (LNCS), Vol. 7186.
Springer-Verlag, Heidelberg, Germany, 360–364.

[6] Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard Trefler.
2012. Explaining Counterexamples Using Causality. Form. Methods Syst. Des. 40,
1 (Feb. 2012), 20–40.

[7] Marcello Maria Bersani, Domenico Bianculli, Carlo Ghezzi, Srđan Krstić, and
Pierluigi San Pietro. 2014. SMT-based Checking of SOLOIST over Sparse Traces.
In Proc. FASE 2014 (LNCS), Vol. 8411. Springer-Verlag, Heidelberg, Germany,
276–290.

[8] Almudena Díaz, Pedro Merino, and Alberto Salmerón. 2011. Obtaining Models for
Realistic Mobile Network Simulations using Real Traces. IEEE Communications

Letters 15, 7 (July 2011), 782–784.
[9] Ram Das Diwakaran, Sriram Sankaranarayanan, and Ashutosh Trivedi. 2017.

Analyzing Neighborhoods of Falsifying Traces in Cyber-physical Systems. In
Proc. ICCPS ’17. ACM, New York, NY, USA, 109–119.

[10] Alexandre Donzé. 2010. Breach, A Toolbox for Verification and Parameter Synthe-
sis of Hybrid Systems. In Proc. CAV 2010 (LNCS), Vol. 6174. Springer, Heidelberg,
Germany, 167–170.

[11] Wei Dou. 2016. A Model-Driven Approach to Offline Trace Checking of Temporal

Properties. Ph.D. Dissertation. University of Luxembourg. http://hdl.handle.net/
10993/29184

[12] Wei Dou. 2018. TemPsy-Report. https://doi.org/10.6084/m9.figshare.6797171.v8
[13] Wei Dou. 2018. TemPsy Report tool. Retrieved July 18, 2018 from https:

//weidou.github.io/TemPsy-Report/
[14] Wei Dou. 2018. TemPsy Violation Visualization tool. Retrieved July 18, 2018

from http://weidou.github.io/TemPsy-Violation-Visualization
[15] Wei Dou, Domenico Bianculli, and Lionel Briand. 2014. A Model-based Approach

to Offline Trace Checking of Temporal Properties with OCL. Technical Report
TR-SnT-2014-5. SnT Centre - University of Luxembourg. http://hdl.handle.net/
10993/16112

[16] Wei Dou, Domenico Bianculli, and Lionel Briand. 2014. Revisiting Model-driven
Engineering for Run-time Verification of Business Processes. In Proc. SAM 2014

(LNCS), Vol. 8769. Springer, Cham, Switzerland, 190–197.
[17] Wei Dou, Domenico Bianculli, and Lionel Briand. 2017. AModel-DrivenApproach

to Trace Checking of Pattern-based Temporal Properties. In Proc. MODELS 2017.
IEEE Computer Society, Los Alamitos, CA, 323–333.

[18] Wei Dou, Domenico Bianculli, and Lionel Briand. 2017. TemPsy-Check: a Tool
for Model-driven Trace Checking of Pattern-based Temporal Properties. In Proc.

International Workshop on Competitions, Usability, Benchmarks, Evaluation, and

Standardisation for Runtime Verification Tools (RV-CuBES 2017 (Kalpa Publications

in Computing), Vol. 3. EasyChair, Manchester, United Kingdom, 64–70.

[19] Matthew B Dwyer, George S Avrunin, and James C Corbett. 1999. Patterns in
property specifications for finite-state verification. In Proc. ICSE 1999. ACM, New
York, NY, USA, 411–420.

[20] Eclipse. 2018. Eclipse OCL Tools. Retrieved July 18, 2018 from http://www.
eclipse.org/modeling/mdt/?project=ocl

[21] Elastic. 2018. ElasticSearch. Retrieved July 18, 2018 from https://www.elastic.co
[22] Yliès Falcone, Dejan Ničković, Giles Reger, and Daniel Thoma. 2015. Second

International Competition on Runtime Verification. In Proc. RV 2015 (LNCS),
Vol. 9333. Springer, Heidelberg, Germany, 405–422.

[23] Thomas Ferrère, Oded Maler, and Dejan Ničković. 2015. Trace Diagnostics Using
Temporal Implicants. In Proc. ATVA 2015 (LNCS), Vol. 9364. Springer International
Publishing, Cham, 241–258.

[24] Google. 2018. AngularJS. Retrieved July 18, 2018 from https://www.angularjs.org
[25] Meteor Development Group. 2018. Meter.js. Retrieved July 18, 2018 from

https://www.meteor.com
[26] Sylvain Hallé. 2016. When RV Meets CEP. In Proceedings of RV 2016 (LNCS),

Vol. 10012. Springer International Publishing, Cham, 68–91.
[27] Klaus Havelund. 2015. Rule-based runtime verification revisited. Int. J. Softw.

Tools Technol. Transf. 17, 2 (2015), 143–170.
[28] MongoDB Inc. 2018. MongoDB. Retrieved July 18, 2018 from https://www.

mongodb.com
[29] Aaron Kane, Thomas Fuhrman, and Philip Koopman. 2014. Monitor based oracles

for cyber-physical system testing: practical experience report. In Proc. DSN 2014.
IEEE Computer Society, Los Alamitos, CA, 148–155.

[30] Sascha Konrad and Betty H. C. Cheng. 2005. Real-time specification patterns. In
Proc. ICSE ’05. ACM, New York, NY, USA, 372–381.

[31] Martin Leucker and Christian Schallhart. 2009. A Brief Account of Runtime
Verification. Journal of Logic and Algebraic Programming 78, 5 (May/June 2009),
293–303.

[32] David Luckham. 2008. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. In Proceedings of RuleML ’08.
Springer-Verlag, Heidelberg, Germany, 3–3.

[33] Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O’Neil Mered-
ith, Traian Florin Şerbănuţă, and Grigore Roşu. 2014. RV-Monitor: Efficient
Parametric Runtime Verification with Simultaneous Properties. In Proc. RV 2014

(LNCS), Vol. 8734. Springer, Cham, Switzerland, 285–300.
[34] Samaneh Navabpour, Yogi Joshi, Wallace Wu, Shay Berkovich, Ramy Medhat,

Borzoo Bonakdarpour, and Sebastian Fischmeister. 2013. RiTHM: A Tool for
Enabling Time-triggered Runtime Verification for C Programs. In Proc. ESEC/FSE

2013. ACM, New York, NY, USA, 603–606.
[35] Dejan Ničković, Olivier Lebeltel, Oded Maler, Thomas Ferrère, and Dogan Ulus.

2018. AMT 2.0: Qualitative and Quantitative Trace Analysis with Extended Signal
Temporal Logic. In Proc. TACAS 2018 (LNCS), Vol. 10806. Springer International
Publishing, Cham, 303–319.

[36] István Raáth and Edward Willink. 2012. Fast, Faster and Super-
fast queries. http://www.eclipse.org/modeling/mdt/ocl/docs/publications/
EclipseConEurope2012/FastQueries.pdf. EclipseCon Europe 2012 presentation.

[37] Giles Reger, Helena Cuenca Cruz, and David Rydeheard. 2015. MarQ: Monitoring
at Runtimewith QEA. In Proc. TACAS 2015 (LNCS), Vol. 9035. Springer, Heidelberg,
Germany, 596–610.

[38] Viktor Schuppan and Armin Biere. 2005. Shortest Counterexamples for Symbolic
Model Checking of LTL with Past. In Proc. TACAS’05 (LNCS), Vol. 3440. Springer-
Verlag, Berlin, Heidelberg, 493–509.

[39] Yogi Joshi. 2016. RiTHM-v2.0. Retrieved July 18, 2018 from https://github.com/
yogirjoshi/maven-repo

https://www.amcharts.com
https://www.amcharts.com
http://hdl.handle.net/10993/29184
http://hdl.handle.net/10993/29184
https://doi.org/10.6084/m9.figshare.6797171.v8
https://weidou.github.io/TemPsy-Report/
https://weidou.github.io/TemPsy-Report/
http://weidou.github.io/TemPsy-Violation-Visualization
http://hdl.handle.net/10993/16112
http://hdl.handle.net/10993/16112
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
https://www.elastic.co
https://www.angularjs.org
https://www.meteor.com
https://www.mongodb.com
https://www.mongodb.com
http://www.eclipse.org/modeling/mdt/ocl/docs/publications/EclipseConEurope2012/FastQueries.pdf
http://www.eclipse.org/modeling/mdt/ocl/docs/publications/EclipseConEurope2012/FastQueries.pdf
https://github.com/yogirjoshi/maven-repo
https://github.com/yogirjoshi/maven-repo

	Abstract
	1 Introduction
	2 Background: the TemPsy Language
	3 Characterization of TemPsy Violations
	4 Model-driven Trace Diagnostics
	4.1 Overview of the approach
	4.2 Diagnostics for the ``Existence'' pattern
	4.3 Diagnostics for the ``Precedence'' pattern

	5 Tool support
	6 Evaluation
	6.1 Benchmark and Settings
	6.2 Scalability Analysis

	7 Related work
	8 Conclusions
	Acknowledgments
	References

