
Int J Softw Tools Technol Transfer
DOI 10.1007/s10009-017-0454-5

REGULAR PAPER

First international Competition on Runtime Verification: rules,
benchmarks, tools, and final results of CRV 2014

Ezio Bartocci1 · Yliès Falcone2,3 · Borzoo Bonakdarpour4 · Christian Colombo5 ·
Normann Decker6 · Klaus Havelund7 · Yogi Joshi8 · Felix Klaedtke9 ·
Reed Milewicz10 · Giles Reger11 · Grigore Rosu3 · Julien Signoles12 ·
Daniel Thoma6 · Eugen Zalinescu13 · Yi Zhang3

© The Author(s) 2017. This article is an open access publication

Abstract The first international Competition on Runtime
Verification (CRV) was held in September 2014, in Toronto,
Canada, as a satellite event of the 14th international con-
ference on Runtime Verification (RV’14). The event was
organized in three tracks: (1) offline monitoring, (2) online
monitoring of C programs, and (3) online monitoring of Java
programs. In this paper, we report on the phases and rules,
a description of the participating teams and their submitted
benchmark, the (full) results, as well as the lessons learned
from the competition.

Keywords Runtime Verification · Software competition ·
Monitoring · Benchmarks

B Ezio Bartocci
ezio.bartocci@tuwien.ac.at

1 TU Wien, Vienna, Austria

2 Inria, CNRS, Laboratoire d’Informatique de Grenoble, Univ.
Grenoble-Alpes, 38000 Grenoble, France

3 University of Illinois at Urbana-Champaign, Champaign, IL,
USA

4 McMaster University, Hamilton, Canada

5 University of Malta, Msida, Malta

6 Lübeck University, Lübeck, Germany

7 Jet Propulsion Laboratory, NASA, Pasadena, CA, USA

8 University of Waterloo, Waterloo, Canada

9 NEC Laboratories Europe, Heidelberg, Germany

10 University of Alabama at Birmingham, Birmingham, AL,
USA

11 University of Manchester, Manchester, UK

12 CEA, LIST, Software Security Laboratory, PC 174, 91191
Gif-sur-Yvette, France

13 ETH Zurich, Zurich, Switzerland

1 Introduction

Runtime verification [7,45,46,51,66,82],1 from here on
referred to as RV, refers to a class of lightweight scalable
techniques for analysis of execution traces. The core idea is
to instrument a program to emit events during its execution,
which are then processed by a monitor. This paper focuses
specifically on specification-based trace analysis, where exe-
cution traces are verified against formal specificationswritten
in formal logical systems. Other forms of RV, not treated in
this paper, include for example algorithm-based trace anal-
ysis, such as detecting concurrency issues such as data races
and deadlocks; specification mining from traces; and trace
visualization.

Specification-based trace analysis is a topic of particu-
lar interest due to the many different logics and supporting
tools that have been developed over the last decade, including
the following to just mention a few [5,6,9,10,28,34,36,38,
41,42,44,50,67,70,71,74,75]. Unlike proof-oriented tech-
niques, such as theorem proving or model checking, that aim
to verify exhaustively whether a property is satisfied for all
the possible system executions, specification-based RV auto-
matically checks only if a single execution trace is correct,
and it therefore does not suffer from the classic manual labor
and state-explosion problems, typically associated with the-
orem proving and model checking. The achieved scalability
of course comes at the cost of less coverage.

As illustrated in Fig. 1, an RV process consists of three
main steps: monitor synthesis, system instrumentation, and
monitoring. In the first step, a monitor is synthesized from
a requirement expressed in a formal specification language
(e.g., regular expression, automaton, rule set, grammar, or
temporal logic formula), or it is programmed directly in a

1 http://runtime-verification.org.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-017-0454-5&domain=pdf
http://runtime-verification.org

E. Bartocci et al.

FORMAL/INFORMAL REQUIREMENT

Monitor Synthesis

MONITOR

INSTRUMENTED SYSTEM

verdict

feedback observation

SYSTEM

Fig. 1 Runtime verification main phases

general-purpose programming language [46,69]. A monitor
is a program or a device that receives as input a sequence of
events (observations) and emits verdicts regarding the satis-
faction or violation of the requirement. In the second step,
the system is instrumented using event information extracted
from requirements. The instrumentation aims at ensuring that
the relevant behavior of the system can be observed at run-
time. In the third step, the program is executedwith the instru-
mentation activated. In online monitoring, the monitor runs
in parallel with (or is embedded into) the program, analyzing
the event sequence as it is produced. In offlinemonitoring, the
event sequence is written to persistent memory, for example
a log file, which at a later point in time is analyzed by the
monitor. In online monitoring, monitor verdicts can trigger
fault protection code. In offline monitoring, verdicts can be
summarized andvisualized in reports, or trigger the execution
of other programs. Instrumentation andmonitoring generally
increase thememory utilization and introduce a runtimeover-
head that may alter the timing-related behavior of the system
under scrutiny. In real-time applications, overhead control
strategies are generally necessary to mitigate the overhead
by, for example, using static analysis to minimize instrumen-
tation, or switching on and off the monitor [8,62,83].

During the last decade, many important tools and tech-
niques have beendeveloped.However, due to lack of standard
benchmark suites as well as scientific evaluation methods
to validate and test new techniques, we believe that the RV
community is in pressing need to have an organized venue
whose goal is to providemechanisms for comparing different
aspects of existing tools and techniques.

For these reasons, inspired by the success of similar events
in other areas of computer-aided verification (e.g., SAT [59],

SV-COMP [20], SMT [2], RERS [53,54]), Ezio Bartocci,
Borzoo Bonakdarpour, and Yliès Falcone organized the first
international Competition on Runtime Verification (CRV
2014) with the aim to foster the process of comparison and
evaluation of software runtime verification tools.

The objectives of CRV’14 were the following:

– To stimulate the development of new efficient and practi-
cal runtime verification tools and the maintenance of the
already developed ones.

– To produce benchmark suites for runtime verification
tools, by sharing case studies and programs that
researchers and developers can use in the future to test
and to validate their prototypes.

– To discuss the measures employed for comparing the
tools.

– To compare different aspects of the tools running with
different benchmarks and evaluating them using different
criteria.

– To enhance the visibility of presented tools among dif-
ferent communities (verification, software engineering,
distributed computing and cyber security) involved in
software monitoring.

CRV’14 was held in September 2014, in Toronto, Canada,
as a satellite event of the 14th international conference on
Runtime Verification (RV’14). The event was organized in
three tracks: (1) offline monitoring, (2) online monitoring of
Cprograms, and (3) onlinemonitoringof Javaprograms.This
paper conveys the experience on the procedures, the rules,
the participating teams, the benchmarks, the evaluation pro-
cess and the results of CRV’14. This paper complements and
significantly extends a preliminary report that was written
before RV’14 [4].

Paper organization The rest of this paper is organized as
follows: Section 2 gives an overview of the phases and the
rules of the competition. Section 3 introduces the partici-
pating teams. Section 4 presents the benchmarks used in all
the three tracks of the competition. Section 5 defines the
method used to compute the score. Section 6 reports on the
results. Section 7 discusses lessons learned. Finally, Sect. 8
concludes the paper.

2 Phases and rules of the competition

Taking inspiration from the software verification competition
(SVCOMP) started in 2012 [19],wehave arranged the overall
process along three different phases for each track:

1. collection of benchmarks (Sect. 2.1),
2. training and monitor submissions (Sect. 2.2),

123

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

Fig. 2 Example of trace in CSV format

3. evaluation (Sect. 2.3).

The first phase (Dec. 15, 2013–March 1, 2014) aims to stim-
ulate each team to develop at most five benchmarks per track
that may challenge the tools of the other teams. In the second
phase (March 2, 2014–May 30, 2014), the teams have the
possibility to further develop and improve their tools using
the benchmarks of the adversary teams. This cross-fertilizes
new ideas between the teams, since each team is exposed to
the same problems and challenges previously faced by the
other teams. The goal of the last phase (June 1, 2014–Sept.
23, 2014) is to provide a framework for a fair and automatic
evaluation of the participating tools. In the following, we
describe the phases in more detail.

2.1 Collection of benchmarks

In the first phase, the teams participating in each track prepare
and upload in a shared repository a set of benchmarks. We
nowprovide adescriptionof the requirements of a benchmark
for the online and offline monitoring tracks.
Online monitoring of C and Java programs tracks In the case
of C and Java tracks, each benchmark contribution is required
to contain the following:

– A program package containing the program source code
(the program to be monitored), a script to compile it, a
script to run the executable, and an English description
of the functionality of the program.

– A specification package containing a collection of files,
each describing a property: an English description of the
property, a formal representation of it in the logical sys-
tem supported by the team, instrumentation information,
and the expected verdict (the evaluation of the property
on the program execution).

The instrumentation information describes of a mapping
from concrete events in the program (for example method
calls) to the abstract events referred to in the specification.

For instance, if one considers theHasNextproperty on Java
iterators (that a call of the method next on an iterator should
always be preceded by a call of the method hasNext that
returns true), the mapping should indicate that the hasNext

event in the property refers to a call to the hasNext() method
on an Iterator object, and similarly for the next event. Several
concrete events can be mapped to the same abstract event.

Offline monitoring track. In the case of offline track, each
benchmark contribution is required to contain the following:

– A trace, in either CSV, custom, or XML format, and a
description of the event kinds contained in the trace. The
three trace formats are illustrated in Fig. 2, 3, and 4.

– A specification package containing a collection of files
describing a property: an English description of the prop-
erty, a formal representation of it in the logical system
supported by the team, and the expected verdict (the eval-
uation of the property on the trace).

Fig. 3 Example of trace in custom format

Fig. 4 Example of trace in XML format

123

E. Bartocci et al.

2.2 Training phase and monitor collection phase

During this phase, all participants can apply their tools to
all the available benchmarks in the repository, and possi-
bly modify their tools to improve their performance. At the
phase end, they submit their contributions as monitors for
the benchmarks. A contribution is related one of the bench-
marks uploaded in the first phase and contains a monitor for
the property in the benchmark together with two scripts, one
for building and one for running the monitor.

2.3 Benchmark evaluation phase

The evaluation of the teams’ contributions is performed on
DataMill,2 [73] a distributed infrastructure for computer
performance experimentation targeted at scientists that are
interested in performance evaluation. DataMill aims to allow
the user to easily produce robust and reproducible results
at low cost. DataMill executes experiments multiple times,
obtaining average values, and generally deploys results from
research on how to set up such experiments. Each participant
has the possibility to set up and try their tool using DataMill.
The final evaluation is performed by the competition orga-
nizers.

3 Participating teams and tools

In this section, we provide a description of participating
teams and tools.

3.1 C track

Table 1 summarizes the teams and tools participating in the
track of online monitoring of C programs. The tools are
described in the rest of this subsection.

3.1.1 RiTHM

RiTHM (Runtime Time-triggered Heterogeneous Monitor-
ing) [71] is a tool for runtime verification of C programs.
RiTHM is developed at the Real-time Embedded Software
Group at University of Waterloo, Canada.

RiTHM takes a C program and a set of properties
expressed in a fragment of first-order LTL as input. RiTHM
instruments the C program with respect to the definition of
predicates supplied alongwithLTL properties, and it synthe-
sizes an LTLmonitor. The program then can be monitored at
runtime by the synthesized monitor, where the instrumented
program sends events in its execution trace to the monitor.

2 http://datamill.uwaterloo.ca.

Table 1 Tools participating in online monitoring of C programs track

Tool References Contact person Affiliation

RiTHM [71] B. Bonakdarpour McMaster Univ.
and U.
Waterloo,
Canada

E- ACSL [41] J. Signoles CEA LIST,
France

RTC [70] R. Milewicz University of
Alabama at
Birmingham,
USA

Further,RiTHMmonitors a fragment of first-orderLTL spec-
ifications as described in [68].RiTHMmonitor can be run on
Graphics Processing Units or multicore Central Processing
Units [68] for accelerating the verification of an execution
trace [18].

3.1.2 E-ACSL

E- ACSL [41] (Executable ANSI/ISO C Specification Lan-
guage) is both a formal specification language and a moni-
toring tool which are designed and developed at CEA LIST,
Software Security Labs. They are integrated to the Frama-
C platform [63], which is an extensible and collaborative
platform dedicated to source-code analysis of C software.

The formal specification language is a large subset of
the ACSL specification language [16] and is designed in a
way that each annotation can be verified at runtime [80].
It is a behavioral first-order typed specification language
which supports, in particular, function contracts, assertions,
user-defined predicates and built-in predicates (such as \
valid(p) which indicates that the pointer p points to a
memory location that the program can write and read).

The plug-inE- ACSL [81] automatically converts aC pro-
gram p1 specified with E- ACSL annotations to another C
program p2 which monitors each annotation of p1 at run-
time. More precisely, for each annotation a, p2 computes
the truth value of a and passes it as an argument to the C
function e_acsl_assert. By default, this function stops
the program execution with a precise error message if a is
0 (i.e., false) and just continues the execution otherwise.
The generated code is linked against a dedicated memory
library which can efficiently compute the validity of complex
memory-related properties (e.g., use-after-free or initializa-
tion of variables) [56,64].

3.1.3 RTC

RTC [70] (Runtime checking for C programs) is a runtime
monitoring tool that instruments unsafe code and monitors

123

http://datamill.uwaterloo.ca

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

Table 2 Tools participating in
online monitoring of Java
programs track

Tool References Contact person Affiliation

Larva [34] C. Colombo University of Malta, Malta

jUnitRV [38,39] D. Thoma ISP, University of Lübeck, Germany

JavaMop [60] G. Roşu U. of Illinois at Urbana Champaign, USA

QEA, MarQ [3] G. Reger University of Manchester, UK

the program execution. RTC is built on top of the ROSE
compiler infrastructure. RTC finds memory bugs, arithmetic
overflows and under-flows, and runtime type violations.Most
of the instrumentations are directly added to the source file
and only require a minimal runtime system. As a result,
the instrumented code remains portable. The team behind
RTC consists of researchers from the University of Alabama
at Birmingham, North Carolina State University, Lawrence
Livermore National Laboratory, and Matlab.

3.2 Java track

Table 2 summarizes the teams and tools participating in the
track of online monitoring of Java programs. The tools are
described in the rest of this subsection.

3.2.1 Larva

Larva [34] is a Java and AspectJ-based RV tool whose spec-
ification language (DATEs [33]) is a flavour of automata
enriched with stopwatches. The automata are symbolic in
that they allow the use of local state in terms of Java vari-
ables and data structures. Furthermore, Larva allows the full
use of Java for the specification of conditions which decide
when transitions trigger. Similarly, for each transition, an
action can be specified so that when it triggers, the local state
can be updated, possibly also carrying out actions on the
monitored system, e.g., to handle a detected problem.

The tool design anddevelopment has been inspired by case
studies in the financial industry [32] where there are frequent
soft real-time constraints such as limits on the amount of
money spent within a particular period and entity life-cycles
such as limiting the kind of operations users are allowed to
perform while suspended.

Over the years, a set of tools have been built to sup-
port and augment Larva including conversion from other
specification languages (such as duration calculus [29]) to
Larva specification language, and extensions to support event
extraction from databases as well as saving the monitor state
to a databasewhen it is not feasible to keep it inmemory [31].

3.2.2 jUnitRV

jUnitRV [38] is a tool extending the unit testing framework
jUnitwith runtimeverification capabilities.Roughly, jUnitRV

provides a new annotation @Monitors listing monitors that
are synthesized from temporal specifications. The monitors
check whether the currently executed tests satisfy the cor-
rectness properties underlying the monitors. As such, jUnit’s
concept of plain assert-based verification limited to checking
properties of single states of a program is extended signif-
icantly toward checking properties of complete execution
paths.

To support specifications beyond propositional properties,
jUnitRV uses a generic approach to enhance traditional run-
time verification techniques toward first-order theories in
order to reason about data. This allows especially for the
verification of multi-threaded, object-oriented systems. The
framework lifts the monitor synthesis for propositional tem-
poral logics to a temporal logic over structures within some
first-order theory. To evaluate such temporal properties, SMT
(SatisfiabilityModuloTheory) solving and classicalmonitor-
ingof propositional temporal properties is combined. jUnitRV

implements this framework for linear-time temporal logic
based on theZ3SMTsolver [37]. The framework is described
in detail in [39,40].

3.2.3 JavaMOP

JavaMOP, with its core component RV-Monitor [67], is
a formalism-independent RV tool designed to effectively
monitor multiple parametric properties simultaneously. It is
developed both by University of Illinois at Urbana Cham-
paign and Runtime Verification, Inc.3

JavaMOP specifications support a variety of formalisms
such as finite state machine, linear temporal logic, string
rewriting systems, etc., which gives users a lot of freedom
to express different kinds of properties. At the same time,
several optimizations [30,61,67] were proposed to make
monitors creation, garbage collection, and internal data struc-
ture access more efficient. Besides, JavaMOP can generate
a single Java agent out of multiple specifications. The Java
agent can be easily attached to the Java virtual machine to
run with Java programs. All these efforts make JavaMOP
capable of monitoring multiple properties simultaneously on
large Java applications.

3 https://www.runtimeverification.com.

123

https://www.runtimeverification.com

E. Bartocci et al.

Table 3 Tools participating in
the offline monitoring track

Tool References Contact person Affiliation

RiTHM2 [71] B. Bonakdarpour McMaster Univ. and U. Waterloo, Canada

MonPoly [10] E. Zălinescu ETH Zurich, Switzerland

STePr N. Decker ISP, University of Lübeck, Germany

QEA, MarQ [3] G. Reger University of Manchester, UK

3.2.4 Monitoring at runtime with QEA (MarQ)

The MarQ tool [75] monitors specifications written in the
Quantified Event Automata (QEAs) [3] specification lan-
guage. It has been developed at the University of Manchester
by Giles Reger and Helena Cuenca Cruz with input from
David Rydeheard.

QEAs combine a quantifier list with an extended finite
state machine over parametric events. Trace acceptance is
defined via the trace slicing approach, extended to allow exis-
tential quantification and a notion of free variables.
Syntax of QEA We give a brief explanation of the syntax
used and will not repeat it below. A QEA consists of a
quantifier list and a state machine. They can have multi-
ple Forall or Exists quantifications with an optional
Where constraint restricting the considered values. States
can be accept states, indicating that a trace is accepted
if any path reaches an accept state. There are two other
state modifiers: skip indicates that missing transitions are
self-looping; next indicates that missing transitions implic-
itly go to the failure state. The failure state is an implicit
non-accept state with no outgoing transitions; once the fail-
ure state has been reached, success (for this binding) is not
possible.

The MarQ tool implements an incremental monitoring
algorithm for QEAs. A structural specialization module
attempts to specialize the algorithm based on structural prop-
erties of the specification. Singly quantified specifications are
directly indexed; otherwise, a general symbol-based index-
ing approach is used.

For monitoring Java programs, MarQ is designed to be
used with AspectJ. It also implements mechanisms for deal-
ing with garbage collection and can either use reference or
semantic identity for monitored objects.

3.3 Offline track

Table 3 summarizes the tools teams and participating in the
track of offlinemonitoring. The tools are described in the rest
of this subsection.

3.3.1 RiTHM-2

RiTHM [71], as previously described, is a tool for runtime
verification. In addition to onlinemonitoring of C programs,

it can process execution traces for performing offline verifi-
cation. Further, RiTHM was extended to process execution
traces inXMLandCSV formats as per the schemas described
in Sect. 2.1.RiTHM is designed formonitoring specifications
described using LTL or a first-order fragment of LTL [68].

3.3.2 MonPoly

MonPoly [10] is a monitoring tool for checking compliance
of IT systems with respect to policies specifying normal or
compulsory system behavior. The tool has been developed
as part of several research projects on runtime monitor-
ing and enforcement in the Information Security group at
ETH Zurich. MonPoly is open source, written in OCaml.

Policies are given as formulas of an expressive safety
fragment of metric first-order temporal logic (MFOTL),
including dedicated operators for expressing aggregations
on data items. The first-order fragment is well suited for
formalizing relations between data items, while the tem-
poral operators are used to express quantitative temporal
constraints on the occurrence or non-occurrence of events at
different time points. An event streams can be input through a
log file or a UNIX pipeline, whichMonPoly processes iter-
atively, either offline or online. The stream can be seen as a
sequence of timestamped databases, each of them consisting
of the events that have occurred in the system execution at
a point in time. Each tuple in one of the databases’ relations
represents a system action together with the involved data.
For a given event stream and a formula, MonPoly outputs
all the policy violations (Table 4).

Further details onMFOTLand the tool’s underlyingmoni-
toring algorithm are given in [12,13,15].MonPoly has been
used in real-world case studies, in collaboration with Nokia
Research Lausanne [11] and with Google Zurich [14]. Fur-
ther performance evaluation and comparison with alternative
approaches can be found in [12] and [15].

3.3.3 STePr

STePr is a prototype log file analysis tool developed at the
Institute for Software Engineering and Programming Lan-
guages, University of Lübeck, Germany.4 It is loosely based
on theLola streamprocessing verification language proposed
by d’Angelo et al. [36]. The log file is considered as an input

4 www.isp.uni-luebeck.de.

123

http://www.isp.uni-luebeck.de

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

Table 4 URLs where it is
possible to download the tools
participating to the competition

Tool Available at (URL)

E- ACSL (ver. 0.4.1) http://frama-c.com/download/e-acsl/e-acsl-0.4.1.tar.gz

JavaMop (ver. 4.2) http://fsl.cs.illinois.edu/index.php/JavaMOP4

jUnitRV https://www.isp.uni-luebeck.de/junitrv

Larva http://www.cs.um.edu.mt/svrg/Tools/LARVA/

MonPoly http://sourceforge.net/projects/monpoly

QEA(MarQ) https://github.com/selig/qea

RiTHM/RiTHM2 https://uwaterloo.ca/embedded-software-group/projects/rithm

RTC https://github.com/rose-compiler/rose/tree/master/projects/RTC

STePr http://www.isp.uni-luebeck.de/stepr

stream of data, and the user can use stream operations to
definenewstreams and combine them in an algebraic fashion.
Assertions can be specified on such streams that, once vio-
lated, make the program report an error. Streams can further
be declared as output streams that are written to report files in
various formats and verbosity. They provide additional infor-
mation on the exact position of the violation and error counts
allowing for convenient analysis of the occurred deviations.
STePr is written in the Scala programming language5 and
provides a Scala-internal domain-specific language for spec-
ifications. The full power of Scala can be used for specifying
further stream operation if needed.

3.3.4 Monitoring at runtime with QEA (MarQ)

MarQ is described in Sect. 3.2.4 as a tool for monitoring
Java programs. Here, we give details of how it can be used
for offline monitoring.

MarQ can parse trace files in either CSV or XML for-
mats (JSON traces are not supported). The CSV parser has
been hand-written to optimize the translation of events into
the internal representation. The XML parser makes use of
standard Java library features. As a consequence, the XML
parser is relatively inefficient compared to the CSV parser.
Therefore, we prefer the CSV format and would normally
first translate traces into this format.

One can use different events in the specification and the
trace when monitoring withMarQ. For example, an abstract
event in the specification can have a different name, arity, and
parameter order as the corresponding event in the trace. Fur-
thermore, multiple events in the trace can be mapped to an
abstract event, and vice-versa. To handle this,MarQ requires
the use of so-called translators that can translate event names
aswell as permuting or dropping event parameters. Addition-
ally, translators can be used to interpret values, i.e., to parse
strings into integer objects. Translators are required when a

5 www.scala-lang.org.

parameter value should be treated as its interpreted value, as
is the case with a counter.

3.4 Summary

Table 5 summarizes some of the features of the tools pre-
sented in this section. A checkmark sign (�) indicates a
supported feature. Four categories of features are presented.
Input requirement specification The first category concerns
the specification of the input requirement that a tool canmon-
itor. The entry user-enabled in Table 5 is ticked when the
corresponding tool allows the user to specify the require-
ment. In this case, the tool supports one or more specification
languages that allow the user to write flexible requirements
to be monitored. The entry built-in is ticked when the cor-
responding tool has a number of built-in specifications that
can be checked at runtime without any specification effort by
the user. Table 5 lists next some of the following common
specification language features: automata-based, regular-
expressions-based, and logic-based, supporting logical-time
where only the relative ordering of events is important or
real-time where the event occurrence times are also rele-
vant. The language can support propositional events and/or
parametric events, dependingonwhether runtime events can-
not carry or, respectively, can carry data values. Generally,
more expressive specification languages require more com-
plex monitoring algorithms. The monitoring code can be
generated fromahigh-level specification language or directly
implemented in a programming language.
InstrumentationTheentryown instrumentation indicates that
the tool implements its own instrumentation phase of the RV
process. The entry relies on AspectJ indicates that the tool
uses AspectJ for instrumentation purposes. The entry relies
on another technique indicates that the tool uses a third-party
technique and/or tool different from AspectJ for instrumen-
tation purposes.
Monitored systems The entries in this category have their
expected meaning and indicate the kind of systems that the
tool can monitor (C programs, Java programs, or traces).

123

http://frama-c.com/download/e-acsl/e-acsl-0.4.1.tar.gz
http://fsl.cs.illinois.edu/index.php/JavaMOP4
https://www.isp.uni-luebeck.de/junitrv
http://www.cs.um.edu.mt/svrg/Tools/LARVA/
http://sourceforge.net/projects/monpoly
https://github.com/selig/qea
https://uwaterloo.ca/embedded-software-group/projects/rithm
https://github.com/rose-compiler/rose/tree/master/projects/RTC
http://www.isp.uni-luebeck.de/stepr
http://www.scala-lang.org

E. Bartocci et al.

Ta
bl
e
5

Su
m
m
ar
y
of

fe
at
ur
es

of
th
e
to
ol
s

Pa
rt
ic
ip
at
in
g

to
ol

U
se
r-

en
ab
le
d

B
ui
lt-

in
Pr
op
os
iti
on
al

ev
en
ts

Pa
ra
m
et
ri
c

ev
en
ts

A
ut
om

at
a-

ba
se
d

L
og

ic
-

ba
se
d

R
eg
ul
ar

E
xp
re
ss
io
ns
-

ba
se
d

L
og

ic
al
-

tim
e

R
ea
l-

tim
e

O
w
n

in
st
ru
-

m
en
ta
tio

n

R
el
ie
s

on A
sp
ec
tJ

R
el
ie
s

on
an
ot
he
r

te
ch
ni
qu
e

C pr
og
ra
m
s
Ja
va

pr
o-

gr
am

s

T
ra
ce
sT

im
e

tr
ig
ge
re
d

E
ve
nt

tr
ig
ge
re
d

In
pu
tr
eq
ui
re
m
en
ts
pe
ci
fic
at
io
n

In
st
ru
m
en
ta
tio

n
M
on
ito

re
d
sy
st
em

s
M
on
ito

ri
ng

m
od
e

R
iT
H
M

�
�

�
�

�
�

�
�

�
�

�
E
-
A
C
SL

�
�

�
�

�
�

�
�

R
T
C

�
�

�
�

L
a
rv

a
�

�
�

�
�

�
�

jU
n
it
R
V

�
�

�
�

�
�

�
�

�
Ja
v
a
M
o
p

�
�

�
�

�
�

�
�

�
�

M
o
n
Po

ly
�

�
�

�
�

�
�

�
ST

eP
r

�
�

�
�

�
M
a
rQ

�
�

�
�

�
�

�
�

�

Monitoring mode The entry time triggered indicates that the
stream of observations from the system is obtained through
sampling. The entry event triggered indicates that the steam
of observations is obtained following the execution of events
in the system.

4 Benchmarks for the monitoring competition

In this section, we provide a description of the benchmarks
provided by participants.

The benchmarks can be dowloaded by cloning the repos-
itory and following the instructions available at:
https://gitlab.inria.fr/crv14/benchmarks.

In the following, for each benchmark, we describe the
related program and property.

4.1 C track

4.1.1 Maximum chunk size in Dropbox connections

This benchmark is provided by RiTHM team.
Description of the monitored program The program simu-
lates Dropbox connections. The program uses the dataset
described in [43] to run the simulation.
Description of the property The property states that for all
connections, it is always the case that chunk size (used to
split files) is less than or equal to 999,999. The property
is formalized using a fragment of first-order LTL [68] as
follows:

∀connection : G (chunksize(connection) ≤ 999,999).

4.1.2 Changes in the chunk size of Dropbox connections

This benchmark is provided by RiTHM team.
Description of the monitored program The benchmark uses
the same program as the one in the benchmark described in
Sect. 4.1.1.
Description of the property The property states that for all
connections, it is always the case that when the chunk size
becomes strictly larger than 10,000, its value eventually
becomes less than or equal to 10,000. The property is for-
malized using a fragment of first-order LTL [68] as follows:

∀connection : G(chunksize (connection) > 10,000
�⇒ F chunksize(connection) ≤ 10,000).

4.1.3 Maximum bandwidth of Youtube connections

Description of the monitored program The program sim-
ulates Youtube connections. The program uses the dataset
described in [85] to run the simulation.

123

https://gitlab.inria.fr/crv14/benchmarks

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

Description of the property The property states that for all
connections, it is always the case that the bandwidth is less
than or equal to 100,000. The property is formalized using a
fragment of first-order LTL [68] as follows:

∀connection : G(bandwidth(connection) ≤ 100,000).

4.1.4 Changes in the bandwidth of Youtube connections

Description of the monitored program This benchmark uses
the same program as the one in Sect. 4.1.3
Description of the property The property states that, for all
connections, it is always the case that when the bandwidth is
strictly larger than 10,000, it eventually becomes less than or
equal to 10,000Thebandwidth is a parameter of the execution
trace. It is calculated by using size_in_bytes attribute which
provides the number of bytes transferred, and durationwhich
provides the time in seconds for the transfer. The property
is formalized using a fragment of first-order LTL [68] as
follows:

∀connection : G (
bandwidth(connection) > 10,000

�⇒ F bandwidth(connection) ≤ 10,000
)
.

4.1.5 Allowed operations on files and sockets

Description of the monitored program The program sim-
ulates I/O operations by multiple processes on files and
sockets. The output of this program is similar to that of run-
ning the strace utility in Linux to produce a system call
trace for a set of processes.
Description of the property The property states that for all
the processes and all the files, it is always the case that if a
file (resp. a socket) is opened then it is eventually closed by
the process. The property is formalized using a fragment of
first-order LTL [68] as the conjunction of the two following
formulae:

∀process,∀file :
G (open (process, file) �⇒ F close (process, file))

∀process,∀socket :
G (accept (process, socket) �⇒ F close (process, socket))

4.1.6 Binary search

This benchmark is provided by the E- ACSL team.
Description of the monitored program This benchmark con-
sists in monitoring the standard binary search function
defined below. It searches some key in a sorted array a of a
given length.

int binary_search

(int* a, int length, int key)
{
int low = 0, high = length - 1;
while (low <= high) {
int mid = low + (high - low) / 2;
if (a[mid] == key) return mid;
if (a[mid] < key) low = mid + 1;
else high = mid - 1;

}
return -1;

}

The main function of the program calls this function 3
times on an array of 2,000,000 elements in order to:

– search an existing key and check that the return index is
correct;

– search an unknown key and check that the function
returns -1;

– search an existing well-chosen key in a wrongly sorted
array (1 element ismisplaced) and check that the function
incorrectly returns -1.

Description of the property The monitored program must
verify the following function contract of binary_search:

– it takes as input a positive length and a fully allocated
sorted array of at least length elements;

– it returns either an index idx such that a[idx] ==
key; or -1 if there is no such index.

In the formal specification language E- ACSL [41] based
on behavioral first-order logic, this specification may be
described by the following function contract:

/*@ requires \valid(a+(0..length-1));
requires \forall integer i;

0<= i< length-1==>a[i]<= a[i+1];
requires length >=0;

behavior exists:
assumes \exists integer i;
0 <= i < length && a[i] == key;

ensures 0 <= \result < length
ensures a[\result] == key;

behavior not_exists:
assumes \forall integer i;
0 <= i < length ==> a[i] != key;

ensures \result == -1;
*/
int binary_search
(int* a, int length, int key);

123

E. Bartocci et al.

The first requires clause states that each cell of the array
must be correctly allocated, the second one states that the
array must be sorted, and the third one indicates that the
length must be positive. Then, the first behavior says that if
the searched key exists in the array, the result of the function
must be an array index corresponding to this key, while the
second behavior says that the function returns -1 if there is
no such index.

E- ACSL reports that the second requirement is violated
when calling this function on the wrongly sorted array. Here
is the result of the execution:

Precondition failed at line 18 in
function binary_search.
The failing predicate is:
\forall integer i;

0<=i< length-1==>*(a+i)<=*(a+(i+1)).

4.1.7 Merging arrays

This benchmark is provided by the E- ACSL team.
Description of the monitored program This benchmark pro-
vides two different implementations of a merging algorithm
which merges two sorted arrays into a third one in a way
that the resulting array is also sorted. The first implementa-
tion is assumed to be correct and is provided below, while
the second one introduces an error by removing the marked
instruction.

void merge
(int *t1,int *t2,int *t3,int l1,int l2)

{
int i = 0, j = 0, k = 0 ;
while (i < l1 && j < l2) {
if (t1[i] < t2[j]) {
t3[k] = t1[i];
i++;

} else {
t3[k] = t2[j];
j++;

}
k++;

}
while (i < l1) {
t3[k] = t1[i];
i++;
k++; // removed instruction

}
while (j < l2) {
t3[k] = t2[j];
j++;
k++;

}
}

The main function of the program calls both functions with
one array of 6000 elements and another one of 4000 elements.
Description of the properties The monitored program must
check that each call to both functions:

– takes as input two positive lengths l1 and l2 and two
sorted arrays t1 and t2 of length l1 and l2, respec-
tively;

– modifiest3 such that it is a sorted array of length l1+l2
where each element belongs to either t1 or t2. Recip-
rocally, each element of t1 and t2 must belong to t3.

In the formal specification language E- ACSL [41] based
on behavioral first-order logic, this specification may be
described by the following function contract:

/*@ requires l1 >= 0;
requires l2 >= 0;
requires \forall integer i;0<=i<l1-1

==> t1[i] <= t1[i+1];
requires \forall integer i;0<=i<l2-1

==> t2[i] <= t2[i+1];
ensures\forall integer i;0<=i<l1+l2-1

==> t3[i] <= t3[i+1];
ensures \forall integer i;0<=i<l1

==> \exists integer j; 0<=j<l1+l2
&& t1[i] == t3[j];

ensures \forall integer i; 0<=i<l2
==> \exists integer j; 0<=j<l1+l2

&& t2[i] == t3[j];
ensures\forall integer i;0<=i<l1+l2

==> ((\exists integer j; 0<=j<l1
&& t3[i] == t1[j])

|| \exists integer j; 0<=j<l2
&& t3[i] == t2[j]);

*/
void merge
(int *t1,int*t2,int*t3,int l1,intl2);

The two first requirements indicate that the lengthsl1 and
l2 of the input arrays t1 and t2 must be positive, while
the two other requirements say that these arrays must be
sorted. If the requirements of the function are satisfied, itmust
ensure 4 postcondition provided by the ensures clause.
Thefirst one indicates that the output arrayt3must be sorted.
The second (resp. third) postconditions indicates that each
element of t1 (resp. t2) must also belong to t2, while the
last postcondition states the reverse condition which is that
each element of t3 belongs to either t1 or t2.

E- ACSL reports that the first postcondition is violated
when calling the incorrect implementation. It states that the
output array is sorted. Indeed, because of themissing instruc-
tion, the end of the output array contains (unsorted) garbage.
Here is the result of the execution.

123

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

Postcondition failed at line 59 in
function wrong_merge.
The failing predicate is:
\forall integer i;

0 <= i < (\old(l1)+\old(l2))-1
==>*(\old(t3)+i)<=*(\old(t3)+(i+1)).

4.1.8 Quicksort

This benchmark is provided by the E- ACSL team.
Description of the monitored program This benchmark pro-
vides an implementation of the standard quicksort algorithm,
which sorts a given array between two indexes left and
right:

void quicksort
(int *array, int left, int right)

{
if(left < right) {
int idx = (left+right)/2;
int new_idx =
partition(array,left,right,idx);

quicksort(array, left, new_idx-1);
quicksort(array, new_idx+1, right);

}
}

This implementation uses two helper functionspartition
and swap. Only the first one is given below. The second one
which swaps the contents of two array cells is straightfor-
ward.

int partition
(int *array,int left,int right,int idx)
{

int val=array[idx],store=left, i;
swap(array, idx, right);
for(i = left; i < right; i++) {
if(array[i] <= val) {
swap(array, i, store);
store++;

}
}
swap(array, store, right);
return store;

}

The main function of the program contains 2 calls to the
quicksort function on an unsorted array of 10,000 ele-
ments. The first call is a correct one, but the second call gives
10,001 as the right bound instead of 10,000 (at most).
Description of the properties The only property that must be
checked by this benchmark is that quicksort is called on
a fully allocated array up to the given length.

In the formal specification language E- ACSL [41] based
on behavioral first-order logic, this specification may be
described by the following function contract which formally
expresses that each cell of the array between left and
rightmust be valid (non-null and points to a memory loca-
tion that the program is allowed to write).

/*@ requires \forall integer j;
left <= j <= right
==> \valid(array+j); */

void quicksort
(int* array, int left, int right);

E- ACSL reports that this property is violated on the sec-
ond function call since the function tries to access to the
invalid index 10,001 of the array. Here is the result of the
execution.

Precondition failed at line 35 in
function quicksort.
The failing predicate is:
\forall integer j;
left <= j <= right==>\valid(array+j).

4.1.9 Accesses to arrays without off-by-one nor
out-of-bounds

This benchmark is provided by the RTC team.
Description of the monitored program The program is a test
case from the Juliet test suite [23], a collection of test cases
in the C/C++ language produced by the NIST. This program
is a minimal example of a violation of the property described
below. It does an array access from a statically allocated array
of size 1024 at index 1024.
Description of the property The property states that there
should not be off-by-one errors (see item 193 in the Common
Weakness Enumeration6 list) nor out-of-bounds read (see
item 125 in the Common Weakness Enumeration7 list) on a
global array.

4.1.10 Absence of buffer overflow in a palindrome
generator

This benchmark is provided by the RTC team.
Description of the monitored program The program finds the
next highest number that is a palindrome after a number pro-
vided as input. The program has been modified by adding a
heap-based buffer overflow when reading the input number.
The number is written with an unbounded string copy to the
heap allocated buffer ’k’ of size MAX_LEN (300). The pro-
gram contains a call to strcpy() that copies a single character

6 https://cwe.mitre.org/data/definitions/193.html.
7 https://cwe.mitre.org/data/definitions/125.html.

123

https://cwe.mitre.org/data/definitions/193.html
https://cwe.mitre.org/data/definitions/125.html

E. Bartocci et al.

from the input string to the buffer, and this line is reached
multiple times as the program scans over the input string. The
program is a test case of the STONESOUP test suite [17], a
collection of test cases in the C and Java languages produced
by the NIST.
Description of the property The property states the absence
of buffer overflow. The vulnerability could allow an attacker
to execute code by writing past the buffer and overwriting
function pointers that exist in memory (see item 122 in the
Common Weakness Enumeration8 list).

4.1.11 Absence of negative pointers in function calls

This benchmark is provided by the RTC team.
Description of the monitored program The program attempts
to call a standard library function, strcat(), with a negative
pointer index. The program is a test case from the Juliet test
suite [23], a collection of test cases in the C/C++ language
produced by the NIST. The program contains an array access
with a negative pointer index in the arguments to strcat().
Description of the property The property states that there
should not be pointers referring to negative values passed as
arguments to function.

4.2 Java track

4.2.1 Gold users of the financial transaction system

The benchmark is provided by the Larva team. The
Larva team provided five benchmarks (described also in
Sects. 4.2.2, 4.2.3, 4.2.4, and 4.2.5). Common to all the
benchmarks is that the considered properties concern a finan-
cial transaction system described in the following.
Description of themonitored programFiTS (Financial Trans-
actionSystem) is a cut-downversionof afinancial transaction
system aimed at providing basic functionality to ensure that
the focus is on the verification techniques and not on under-
standing the underlying system. Based on FiTS, a number of
properties inspired from real-life case studies are specified.
FiTS is a barebone system mocking the behavior of a finan-
cial transaction system. It emulates a virtual banking system
in which users may open accounts from which they may per-
form money transfers. The system has two types of users:
administrators and clients. The former have more rights than
normal clients enabling them to perform certain actions such
as approving the opening of an account, enabling a new user
and registering new users. A client can invoke a number of
actions to access their (money) accounts which they have
registered on FiTS—actions which they may invoke through
an online interface. Information about each registered client
is stored in a database, including information such as the

8 https://cwe.mitre.org/data/definitions/122.html.

client’s name and country of origin, and client classification
information.

Under FiTS, each client may be associated with a number
of money accounts belonging to him. Clients may request
the creation of a new account or close down one of their
accounts at any point in time. To access accounts, an existing
client may open a login session on FiTS to make transfers
or manage their money accounts. A user may have multiple
sessions open at the same time.

The following properties are specified in a guarded-
command language (GCL) as a series of Java-based rules
of the form event | condition → action.
Descriptionof the propertyTheproperty states that only users
based in Argentina can be Gold users. The property can be
expressed as follows:

*.makeGoldUser(..) target (UserInfo u)
| !(u.getCountry().equals(“Argentina”))
→ Verification.fail(“P1 violated”);

Informally, upon giving the status of Gold user to a client,
it must be ensured that he or she is from Argentina. Thus,
any trace containing a call to makeGoldUser on a user whose
country is not Argentina violates the property and vice-versa.

4.2.2 Initialization in the financial transaction system

The benchmark is provided by the Larva team.Description
of the monitored program The program of this benchmark is
described in Sect. 4.2.1.
Description of the propertyThe property states that the trans-
action systemmust be initialized before any user logs in. The
property can be expressed as follows:

*.initialise(..) | → Verification.initialized=true;
UserInfo.openSession(..) | !Verification.initialized

→ Verification.fail(“P2 violated”);

Informally, set a initialized flag to true when the system is
initialized and check this flag upon the start of any user ses-
sion. Hence, a trace containing a call to openSession before
initialize violates the property while any other trace satisfies
it.

4.2.3 Negative balance in the financial transaction system

The benchmark is provided by the Larva team.
Description of the monitored program The program of this
benchmark is described in Sect. 4.2.1.
Description of the property The property states that no
account may end up with a negative balance after being
accessed. The property can be expressed as follows:

*.withdraw(..) target (UserAccount a) | a.getBalance() < 0
→ Verification.fail(“P3 violated”);

123

https://cwe.mitre.org/data/definitions/122.html

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

*.deposit(..) target (UserAccount a) | a.getBalance() < 0 →
Verification.fail(“P3 violated”);

Informally, the rules check the balance of the account after a
withdraw or deposit actions to ensure that it is always posi-
tive. A trace containing a withdraw or deposit on an account
with subsequent negative balance violates the property. Oth-
erwise, the trace satisfies the property.

4.2.4 Unique account in the financial transaction system

The benchmark is provided by the Larva team.
Description of the monitored program The program of this
benchmark is described in Sect. 4.2.1.
Description of the property The property states that an
account approved by the administratormay not have the same
account number as any other already existing account in the
system. The property can be expressed as follows:

*.approveOpenAccount(Integer uid, String acc_number)
| → Verification.approvedAccounts.add(acc_number);
*.approveOpenAccount(Integer uid, String acc_number)
| Verification.approvedAccounts.contains(acc_number)

→ Verification.fail(“P4 violated”);

Informally, a hashmap is kept for all account numbers and
each number assigned to a new account is check for mem-
bership in this hashmap. A trace containing two calls to
approveOpenAccount with the same account number vio-
lates the property.

4.2.5 Reactivation in the financial transaction system

The benchmark is provided by the Larva team.
Description of the monitored program The program of this
benchmark is described in Sect. 4.2.1.
Description of the property The property states that once a
user is disabled, he or she may not withdraw from an account
until activated again. The property can be specified as fol-
lows:

UserInfo.makeDisabled(..) target (UserInfo u)
| → Verification.disabledUsers.add(u);

UserInfo.makeActive(..) target (UserInfo u)
| → Verification.disabledUsers.remove(u);

UserInfo.withdrawFrom(..) target (UserInfo u)
| (Verification.disabledUsers.contains(u))

→ Verification.fail(“P5 violated”);

Informally, the rules keeps track of disabled users by adding
the user to a list upon being disabled and removing the user
upon activating. Subsequently, upon awithdraw the third rule
ensures that the user is not in the list. Thus, a trace containing
a call to makeDisabled followed by a withdraw on the same

user, violates the property. On the contrary, a user performing
a withdraw after being disabled but later activated satisfies
the property.

4.2.6 Incrementing a counter

This benchmark is provided by the jUnitRV team.
The jUnitRV team provided five benchmarks (described

also in Sects. 4.2.7, 4.2.8, 4.2.9, and 4.2.10). Common to
all the benchmarks is that the considered programs are sim-
ple Java programs that generate random method calls that
in turn generate events for the property of the benchmark.
Moreover, the properties are given in linear temporal logic
over first-order formulae as defined in [40]. Free variables
are assumed to be universally quantified at the outermost
position. First-order symbols either refer to some fixed the-
ory or to the current system observation (called observation
symbols). The benchmark properties only use the theories of
IDs, linear equations over integers and linear equations over
reals.

In this benchmark, the property holds on the program.
Description of the monitored programThe aim of this bench-
mark is to test the ability to monitor properties involving
counting. The program simply calls amethod step(int counter)

repeatedly. With each call, the value for counter increases by
one.
Description of the property The required property is that the
parameter counter of method step has to increase by one with
each call. Formally:

∀x G(counter = x �⇒ X(counter = x + 1))

Here, x is a globally quantified variable and counter is an
integer-valued observation symbol. The observed event is the
call to method step, and the observation symbol counter is
a constant referring to the current value of the corresponding
parameter of step.
Example traces A positive example would be the sequence
{counter �→ 1}, {counter �→ 2}, {counter �→ 3}, a neg-
ative example the sequence {counter �→ 1}, {counter �→
2}, {counter �→ 1}.

4.2.7 Request and response

This benchmark is provided by the jUnitRV team. This
benchmark uses the common setting where certain service
are requested and providers have to respond to such requests.
In this benchmark, the property holds on the program.
Description of the monitored program The program calls
a method request (int service) indicating a service with the
given id was requested and respond(int service, int provider) to
indicate that a provider responded to a request for the given
service.

123

E. Bartocci et al.

Description of the property The required property is that
whenever a service is requested, eventually there is a response
for that request from some provider.

Formally:

∀s∀p G ((request ∧ service = s)

�⇒ XF ∃p (respond ∧ service = s ∧ provider = p))

The observed events are the calls to methods request and
respond. The observation symbol service refers to the ser-
vice id of the current event. The observation symbolprovider
refers to the provider id of the current event.
Example traces A positive example would be the sequence

{request, service �→ 1,provider �→ 2},
{request, service �→ 3,provider �→ 4},
{respond, service �→ 1,provider �→ 2},
{respond, service �→ 3,provider �→ 4},

a negative example the sequence

{request, service �→ 1,provider �→ 2},
{request, service �→ 3,provider �→ 4},
{respond, service �→ 3,provider �→ 4}.

4.2.8 Locking critical resources

This benchmark is provided by the jUnitRV team. For this
benchmark, the setting of a critical action requiring locking
is considered. In this benchmark, the property holds on the
program.
Descriptionof themonitoredprogramTheprogramrunsmul-
tiple threads in parallel performing some critical action. The
critical action must only be performed by one thread at a
time. Thus, the threads have to call the method boolean lock()

and obtain the return value true before calling action(). The
lock is released by calling unlock().
Description of the property The property consists of two
parts: A thread has to call lock (returning true) to acquire the
lock before it may call aaction and a call to lock only returns
true, if no thread is currently holding the lock. Formally:

∀i G(((run ∨ unlock) ∧ id = i)

⇒ ¬(action ∧ id = i)U (lockTrue ∧ id = i))

∧ G((lock ∧ id = i ⇒ X(¬lockTrueU unlock ∧ id = i)))

The observed events are the calls to method run() (the main
method of a thread), unlock and action and the return of unlock.
The symbol lockTrue not only indicates that lock returned,
but also that the return value was true. The observation sym-

bol id refers to the id of the thread performing the current
event.
Example traces A positive example would be the sequence
{lock, id �→ 1}, {action, id �→ 1}, {unlock, id �→ 1}, a neg-
ative example the sequence {lock, id �→ 1}, {action, id �→
2}, {unlock, id �→ 1}.

4.2.9 Velocity of an object

This benchmark is provided by the jUnitRV team. This
benchmark pertains the ability to express constraints over
real numbers. In this benchmark, the property holds on the
program.
Description of the monitored program The program simu-
lates an object moving with changing velocity. The object’s
position is observed in discrete steps. A call to the method
step(double pos, double time) indicates such an observation.
Description of the property The required property is that the
average speed between two observations (i.e., calls to step)
must never exceed the maximal velocity 10:

∀s∀t G((time = t ∧ pos = s)

⇒ X(pos − s < 10 · time − t)))

Theobserved event is the call tomethod step. The observation
symbol time refers to the time parameter of method step.
The observation symbol pos refers to the time parameter of
method step.
Example traces A positive example would be the sequence

{time �→ 0.0,pos �→ 0.0},
{time �→ 1.0,pos �→ 5.0},
{time �→ 2.0,pos �→ 10.0},

a negative example the sequence

{time �→ 0.0,pos �→ 0.0},
{time �→ 1.0,pos �→ 50.0},
{time �→ 2.0,pos �→ 100.0}.

4.2.10 Non-crossing routes

This benchmark is provided by the jUnitRV team. The aim of
this benchmark is to demonstrate the expressiveness of linear
temporal logic combinedwith first-order constraints. It there-
fore requires a property for which it would be rather difficult
to implement a monitor manually. The setting is inspired by
the idea of agents in a multi agent system. The agents request
a route from one point to another. Blocked routes must not
cross.
Description of the monitored program The program sim-
ulates such a scenario by repeatedly blocking and freeing

123

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

routes. Blocking a route is indicated by a call to block(Route

route). Freeing a route is indicated by a call to free(Route

route). A route is a simple line segment described by a start-
ing and end point. Thementioned property can be formulated
as: If a point p belongs to a route that is being blocked, no
other route that contains p can be blocked as long as p has
not been freed again. (The point p is freed by freeing a route
that contains p.) Formally:

∀p G((block ∧ onRoute(p)

⇒ X(¬(block ∧ onRoute(p))

U (free ∧ onRoute(p))))

The observed events are the calls to methods block and free.
Let q and r be the start and end points, respectively, given as
arguments to the calledmethod. The only observation symbol
is onRoute(p) which indicates whether a point p is on the
route between q and r . This predicate can be expressed as an
equationonRoute(p) := ∃c(p = q+c·(r−q)∧0 ≤ c ≤ 1).
Example traces A positive example would be the sequence

{block,onRoute �→ {p | ∃c|0≤c≤1(p = (1, 2) + c · (2, 2)}},
{free,onRoute �→ {p | ∃c|0≤c≤1(p = (1, 2) + c · (1, 1)}},
a negative example the sequence

{block, onRoute �→ {p | ∃c|0≤c≤1(p = (1, 2) + c · (2, 2)}},
{block, onRoute �→ {p | ∃c|0≤c≤1(p = (2, 2) + c · (−1, 1)}}.

4.2.11 HasNext on DaCapo Avrora

This benchmark is provided by the Java- MOP team. The
benchmark considers the (classical) HasNext property on
one of the so-called DaCapo [22] benchmark. In this bench-
mark, the property does not hold on the program.
Description of the monitored program The considered pro-
gram is the DaCapo Avrora benchmark, which simulates
a number of programs running on a grid of AVR micro-
controllers. The program is slightly modified to violate the
HasNext property intentionally.
Description of the property This property requires that the
hasNext() method is called and returns true before calling
next() method for each Iterator object i. It may raise a false
positive because one may safely call method next() multiple
times after retrieving the actual number of elements. The
following LTL describes the HasNext property.

∀i G(next(i) �⇒ Yhasnext_true(i))

In the formula, X−1 means previous. Event next(i) corre-
sponds to a call to the method next() on iterator i and event
hasnext_true(i) corresponds to a call to the hasnext()method
on the same iterator that returns true.

4.2.12 Safe usage of locks

This benchmark is provided by the Java- MOP team. In this
benchmark, the property does not hold on the program.
Descriptionof themonitoredprogramOneconsiders a simple
program with 6 threads. Give of the threads release the same
number of times as they acquire a lock. However, one thread
releases one time less than it acquires. Consequently, the
program does not terminate.
Description of the property The property requires a thread
to release as many times as it acquires a lock. Otherwise,
it may cause deadlock and the program may not terminate.
The following CFG formalizes the property.

S −> S begin(t) S end(t)
| S acquire (t , l) S release (t , l)
| epsilon

Events begin(t) and end(t) map to the start and the end of
the execution of a thread t, respectively. Events acquire(t, l)
and release(t,l)map, respectively, to a call to methods
lock() and unlock() on lock l in a thread t.

4.2.13 Calling methods the same number of times

This benchmark is provided by the Java- MOP team. In this
benchmark, the property does not hold on the program.
Descriptionof themonitoredprogramOneconsiders a simple
program which calls some dummy methods A(), B(), and C()

a certain number of times. These methods are not called the
same number of times.
Description of the property The property states that methods
A(), B(), and C() should be called equal times. The following
SRS (String Rewriting System) formalizes the property.

b a −> a b .
c a −> a c .
c b −> b c .
a b −> E .
E b −> b E .
E a −> a E .
E c −> epsilon .
c E −> epsilon .
^ done −> #succeed .
a done −> #fai l .
b done −> #fai l .
c done −> #fai l .

Events a, b and cmap to the calls to the methods A(), B(),
and C(), respectively. The event done corresponds to the end
of a program.

123

E. Bartocci et al.

4.2.14 Safe usage of maps with iterators

This benchmark is provided by the Java- MOP team. In this
benchmark, the property does not hold on the program.
Description of the monitored program The program has 3
iterators for 2 collections which are created from 2 different
maps. The usage of one iterator in this program creates an
unsafe map iterator.
Description of the property This property matches the case
where a collection created from a map is modified while
it is iterated. The following extended regular expression
describes the property.

createColl.update*.createIter
.useIter*.update+.useIter

The events map to the following pointcuts in a program:

event createColl after(Map map)
returning(Collection c) :
(call(* Map.values())
|| call(* Map.keySet()))
&& target(map) {}

event createIter after(Collection c)
returning(Iterator i) :
call(* Collection.iterator())
&& target(c) {}

event useIter before(Iterator i) :
call(* Iterator.next())
&& target(i) {}

event update after(Map map) :
(call(* Map.put*(..))
|| call(* Map.putAll*(..))
|| call(* Map.clear())
|| call(* Map.remove*(..)))
&& target(map) {}

4.2.15 HasNext on full DaCapo

This benchmark is provided by the PRM4j team.
Description of the monitored program This benchmark con-
siders the full DaCapo [22] benchmark suite for evaluation.
This consists of X programs of varying size and complexity.
Description of the property The property being monitored is
the same as that described in Sects. 4.2.11 and 4.2.20, i.e.,
a property about the safe usage of next() on Java Iterators.
In PRM4j, this property can be specified using the following
Java code:

public class FSM_HasNext {

public final Alphabet alphabet
= new Alphabet ();

public final Parameter <Iterator > i =
alphabet.createParameter
("i", Iterator.class);

public final Symbol1 <Iterator >
hasNext =

alphabet.createSymbol1
("hasNext", i);

public final Symbol1 <Iterator > next =
alphabet.createSymbol1("next", i);

public final FSM fsm = new
FSM(alphabet);

public final MatchHandler
matchHandler =
MatchHandler.NO_OP;

public final FSMState initial =
fsm.createInitialState ();

public final FSMState safe =
fsm.createState ();

public final FSMState error =
fsm.createAcceptingState
(matchHandler);

public FSM_HasNext () {
initial.addTransition(hasNext ,safe);
initial.addTransition(next , error);
safe.addTransition(hasNext , safe);
safe.addTransition(next , initial);
error.addTransition(next , error);
error.addTransition(hasNext , safe);

}
}

4.2.16 SafeSyncCollection on full DaCapo

This benchmark is provided by the PRM4j team.
Description of the monitored program This benchmark con-
siders the same programs as that in Sect. 4.2.15.
Description of the property The property being monitored
relates to the safe usage of collections created using the
Collections.synchronized() method. The property is that if a
synchronized collection is created in this way, then there are
two invalid actions that should be detected. Firstly, an iterator
should not be created for the collection by a thread not hold-
ing the collection’s lock. Secondly, if an iterator is created
correctly (i.e., while holding the lock), then it should not be
used incorrectly (i.e., without the lock).

In PRM4j, this property can be specified using the follow-
ing finite state machine. The preceding definitions have been
omitted for conciseness.

public FSM_SafeSyncCollection () {
initial.addTransition(sync , s1);
initial.addTransition
(asyncCreateIter , initial);

initial.addTransition
(syncCreateIter , initial);

initial.addTransition
(accessIter , initial);

s1.addTransition
(asyncCreateIter , error);
s1.addTransition

123

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

(syncCreateIter , s2);
s2.addTransition
(accessIter , error);

}

The sync event relates to create a synchronized col-
lection, the asyncCreateIter and syncCreateIter
events relate to creating iterators with and without the collec-
tion’s lock respectively and the accessIter event is the
‘bad’ access without holding the lock.

4.2.17 UnsafeIterator on full DaCapo

This benchmark is provided by the PRM4j team.
Description of the monitored program This benchmark con-
siders the same programs as that in Sect. 4.2.15.
Description of the property The property being monitored
is a common property relating Java Iterators and the collec-
tions they are create from. It states that an Iterator i created
from a Collection c is invalid and should be used after c has
been updated. In PRM4j, this property can be specified using
the following finite state machine. The preceding definitions
have been omitted for conciseness.

public FSM_UnsafeIterator () {
initial.addTransition(updateColl ,

initial);
initial.addTransition(useIter ,initial);
initial.addTransition(createIter , s1);
s1.addTransition(useIter , s1);
s1.addTransition(updateColl , s2);
s2.addTransition(updateColl , s2);
s2.addTransition(useIter , error);

}

The state machine describes the path to an error state, i.e.,
creating an iterator, updating the collection and then using
the iterator.

4.2.18 UnsafeMapIterator on full DaCapo

This benchmark is provided by the PRM4j team.
Description of the monitored program This benchmark con-
siders the same programs as that in Sect. 4.2.15.
Description of the property The property being monitored is
the same as that described in Sect. 4.2.14. In PRM4j, this
property can be specified using the following state machine.
The preceding definitions have been omitted for conciseness.

public FSM_UnsafeMapIterator () {
initial.addTransition
(createColl , s1);
initial.addTransition

(updateMap , initial);
initial.addTransition
(useIter , initial);

initial.addTransition
(createIter , initial);
s1.addTransition(updateMap , s1);
s1.addTransition(createIter , s2);

s2.addTransition(useIter , s2);
s2.addTransition(updateMap , s3);
s3.addTransition(updateMap , s3);
s3.addTransition(useIter , error);

}

4.2.19 Combination of properties on DaCapo suite

This benchmark is provided by the PRM4j team. The bench-
mark checks the combination of the properties described in
Sects. 4.2.15, 4.2.17 and 4.2.18 on the full DaCapo bench-
mark suite.

4.2.20 HasNext on DaCapo Batik

This benchmark is provided by the QEA team.
Description of the monitored program The considered pro-
gram is the DaCapo [22] Batik benchmark, which is a
single-threaded benchmark that produces a number of Scal-
able Vector Graphics (SVG) images based on the unit tests
in Apache Batik.
Description of the propertyThis is the standard iterator based
property used frequently as an example for runtime verifi-
cation of Java properties. Informally, the Java API requires
that for each Iterator object the hasNext() method be called
and return true before the next() method is called. The fol-
lowing QEA captures the HasNext property. There are two
states which capture the status of unsafe and safe itera-
tion, respectively, i.e., when it is valid to call next() (mapped
to donext to distinguish it from the state modifier). A
hasnext event with a true result fires a transition from
theunsafe tosafe state. Adonext event in theunsafe
state leads to failure.

qea {
Forall(i)
accept skip(unsafe){

hasnext(i,r) if [r = true] ->
safe

donext(i) -> failure
}
accept skip(safe){

donext(i) -> unsafe
}

}

The hasnext and donext events relate to the corre-
sponding events injava.util.Iterator. For example,
the following traces satisfy the property

τ1 = hasnext(A, true).donext(A).hasnext(A, true).

donext(A).hasnext(A, false)

τ2 = hasnext(A, true).hasnext(B, true).donext(B).

hasnext(B, false).donext(A).hasnext(A, false)

123

E. Bartocci et al.

and the following traces violate the property

τ3 = hasnext(A, true).donext(A).donext(A)

τ4 = hasnext(A, false).donext(A)

4.2.21 Safe iterators on DaCapo Batik

This benchmark is provided by the QEA team. Description
of the monitored program The program is the same program
as the one of the benchmarks in Sect. 4.2.20.
Description of the propertyTheHasNext property often leads
to false positives when a collection’s size is used to iterate
over its contents, as is the case in the following code snippet.

int size = collection.size ();
Iterator <Object > iter = collection.

iterator ();
for(int i=0;i<size;i++){

doStuff(iter.next ());
}

A more lenient property is to restrict the number of iter-
ations to the size of the underlying collection. The property
can be captured by a QEA with two states. The iterate
state is entered when the iterator is created and a donext
event can occur as long as the number of previous donext
events is nomore thancsize. Asiterate is a next state,
if the transition cannot be taken due to the guard csize >
0 failing, then there is a transition to the failure state.

qea{
Forall(i)
accept skip(start){

iterator(i,csize) -> iterate
}
accept next(iterate) {

donext(i) if [csize > 0]
do [csize --] -> iterate

}
}

Note that to record the iterator event on a call to
java.util.Collection.iterator, a call to size() is required to extract
csize. For example, the following traces satisfy the prop-
erty

τ1 = iterator(A, 2).donext(A).donext(A)

τ2 = iterator(A, 8).donext(A).donext(A)

and the following trace violates the property

τ3 = iterator(A, 1).donext(A).donext(A)

4.2.22 Persistent hashcodes on DaCapo Batik

This benchmark is provided by the QEA team.
Description of the monitored program The program is the
same program as the one of the benchmarks in Sect. 4.2.20.

Description of the property Hashing structures such as
HashMap andHashSet rely on theproperty that thehashCode
of an object remains the same while the object is inside the
collection. The property can be captured by the following
QEA. The states in and out indicate whether the quanti-
fied object o is in a hashing structure. The counter count
is used to count the number of occurrences. Note that this
relies on the fact that these structures are set-like ando cannot
belong to a collection more than once. Without this restric-
tion, the QEA would need to also have a quantification over
collections. The hashCode on insertion is recorded in h
and checked later; note the use of a next state to ensure that
only valid transitions are taken in the out state.

qea{
Forall(o)
accept skip(out){

add(c,o,h) do [count :=1;] -> in
}
accept next(in){

add(c,o,h2) if [h=h2]
do [count++] -> in

observe(c,o,h2) if [h=h2] -> in
remove(c,o,h2) if [count >1 and h=

h2]
do [count --] -> in

remove(c,o,h2) if [count=1 and h=
h2] -> out

}
}

The add, remove, and observe events relate to the
successful corresponding (add, put, remove, get, contains, con-
tainsKey) methods in java.util.HashSet or
java.util.HashMap.

For example, the following traces satisfy the property

τ1 = add(A, O, 5).add(B, O, 5).remove(B, O, 5)

τ2 = add(A, M, 5).add(A, N , 6).observe(A, M, 5)

τ3 = add(A, O, 5).remove(A, O, 5).add(B, O, 8)

and the following trace violates the property

τ4 = add(A, O, 5).add(B, O, 6).remove(B, O, 7)

τ5 = add(A, O, 5).add(C, O, 5).remove(A, O, 5).

add(B, O, 6).observe(B, O, 6).remove(B, O, 6)

The final trace (τ5) violates the property as object O is still in
the collectionC when it added to Bwith a different hash code.
The explanation for other traces should be straightforward.

4.2.23 Lock ordering on DaCapo Avrora

This benchmark is provided by the QEA team.
Description of the monitored program The considered pro-
gram is the DaCapo [22] Avrora benchmark, which is a

123

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

multi-threaded benchmark that uses the available threads to
simulate a number of programs run on a grid of AVR micro-
controllers.
Description of the property A common deadlock avoidance
strategy is to order locks to ensure that no cycles can exist
between pairs of locks. Note there exists a more general ver-
sion of this property considering cycles of any length. For
the competition, this property was specified using a QEA
as follows. Two (non-equal) locks were quantified over, and
the state machine captures a ‘path to failure,’ i.e., the steps
required to violate the property.

qea{
Forall(l1 ,l2)
Where(l1 != l2)

accept skip(start){ lock(l1) -> lock1
}

accept skip(lock1){
unlock(l1) -> start
lock(l2) -> lock12

}
accept skip(lock12){ lock(l2) ->

lock122 }
accept skip(lock122){

unlock(l2) -> lock12
lock(l1) -> failure

}
}

However, after the competition it was pointed out byKlaus
Havelund that this formulation is overly restrictive as it does
not constrain which threads are taking the locks. A corrected
formulation of the property (along with specifications of this
property and others from the competition in QEA and Log-
Fire) can be found in [52].

For example, the following trace satisfies the property

τ1 = lock(A).unlock(A).lock(B).unlock(B)

and the following trace violates the property

τ2 = lock(A).lock(B).unlock(B).unlock(A)

lock(B).lock(A).unlock(A).unlock(B)

note that τ2 would not violate the corrected version of the
property in [52] if the locks were taken by the same thread.

4.3 Offline track

4.3.1 Maximum chunksize of Dropbox connections

This benchmark is provided by the RiTHM team.
Description of the traces The traces of this benchmark are
extracted from a real-world dataset [43]. The dataset contains
various attributes ofDropbox connections. The dataset is pre-
processed, and the details of chunksize used for file-transfer
are extracted from the connections.

Description of the property This property expresses the
requirement that for all connections, it is always the case
that chunksize is lesser than or equal to 999 999. The prop-
erty is formalized using a fragment of first-order LTL [68] as
follows:

∀connection : G (chunksize (connection) ≤ 999999)

4.3.2 Evolution of the chunksize of Dropbox connections

This benchmark is provided by the RiTHM team. Descrip-
tion of the traces. This benchmark uses the same dataset of
Dropbox traces as the benchmark in Sect. 4.3.1. This prop-
erty expresses the requirement that for all connections, it is
always the case that when chunksize becomes strictly greater
than 100 00 , its value eventually becomes lesser than or equal
to 100 00 .
Description of the property The property is formalized using
a fragment of first-order LTL [68] as follows:

∀connection : G (
chunksize (connection) > 10,000

�⇒ F chunksize (connection) ≤ 10,000
)
.

4.3.3 Maximum bandwidth for Youtube connections

This benchmark is provided by the RiTHM team.
Description of the traces For this benchmark, RiTHM pro-
cesses a real-world dataset [85], which contains logs for
Youtube connections on a campus network. The dataset is
preprocessed, and the value of bandwidth is calculated for
each Youtube connection using various parameters in the
original data.
Description of the property This property expresses the
idea that for all connections, it is always the case that the
bandwidth lesser than or equal to 100,000. The property is
formalized using a fragment of first-order LTL [68] as fol-
lows:

∀connection : G (bandwidth (connection) ≤ 100,000)

4.3.4 Changes in the bandwidth of Youtube connections

This benchmark is provided by the RiTHM team.
Description of the traces This benchmark uses the same
dataset of Youtube traces as the benchmark in Sect. 4.3.3.
Description of the property The property expresses the
requirement that, for all connections, it is always the case
that when the bandwidth is strictly greater than 10,000, it
eventually becomes lesser than or equal to 10,000. The prop-
erty is formalized using a fragment of first-order LTL [68] as
follows:

123

E. Bartocci et al.

∀connection :
G

(
bandwidth (connection) > 10,000
�⇒ F bandwidth (connection) ≤ 10, 000

)

4.3.5 Closing opened files by processes

This benchmark is provided by the RiTHM team.
Description of the traces The log file is obtained by trac-
ing various system calls made by a set of processes, using
strace utility in Linux. The log file of strace is prepro-
cessed to produce an XML file in the format described in
Sect. 2.1. The entries of the log files contain the process IDs,
file descriptors, and the details of the operations performed
on the files.
Description of the property The property expresses require-
ment that for all processes and for all files, it is always the
case that if a file is opened, then it is eventually closed by the
process. A similar condition is expressed for sockets. The
property is formalized using a fragment of first-order LTL
fragment [68] as follows:

∀process,∀file :
G

(
open (process, file) �⇒ F close (process, file)

)

∧
∀process,∀socket :

G (accept(process, socket)
�⇒ F close (process, socket))

4.3.6 Reporting financial transactions of a banking system

This benchmark is provided by the MonPoly team. The
MonPoly team provided five benchmarks from different
areas (described also in Sects. 4.3.7, 4.3.8, 4.3.9, and 4.3.10).
Common to all the benchmarks is that the considered prop-
erties are policies in IT systems.

In the following, we describe the log format and the
property of each benchmark. The provided MFOTL formal-
izations are close toMonPoly’s input format. In particular,
we use a textual representation of the Boolean connectives
and the metric temporal operators. MFOTL’s semantics fol-
lows the standard semantics of first-order logic and the
real-time logic MTL. See [12], for details on MonPoly’s
specification language.
Description of the log The log file is syntactically generated
and is provided in CSV format. To represent a sequence of
timestamped databases in this format, we have used the con-
ventions explainednext, illustratedby the following example.

trans,tp=10,ts=32,c=Alice,t=132,a=2035
trans,tp=10,ts=32,c=Bob,t=135,a=2100
trans,tp=11,ts=32,c=Charlie,t=137,a=60
report,tp=12,ts=38,t=132

Each line corresponds to one tuple in one of the timestamped
databases. Thenameof the relation towhich the tuple belongs
to is given by the first, unnamed field. The next two fields
are: 1) the index of the database in the sequence, called time
point, and 2) the timestamp of the database. The other fields
provide the tuple’s value on each attribute of the correspond-
ing relation. For instance, the first line in the previous log
excerpt corresponds to a transaction event of the customer
c = Alice with the transaction number t = 132 and the
amount a = 2035. The event was carried out at time 32 and
is at the tenth position of the event stream.

This representation of the MFOTL’s semantic models fits
reasonably well with the competition’s trace format. That is,
the first field represents the event’s name, and all other fields
are the event’s parameters. However, events with the same
value of the tp parameter are unordered from the MFOTL
semantics’ perspective.

The size of the log is 13MB. The following property is
violated on the log file.
Description of the property

This property formalizes a compliance policy for a bank-
ing system that processes customer transactions. It stipulated
that executed transactions t of any customer c must be
reported within at most five days if the transferred amount a
exceeds $2000. The property’s formalization in MFOTL is:

ALWAYS FORALL c, t, a.

trans(c, t, a) AND 2000 < a IMPLIES
EVENTUALLY[0, 5] report(t) .

The event trans(c, t, a) denotes that the client c performs the
transaction t , transferring the amount a. The event report(t)
denotes that the transaction t is reported. The temporal oper-
ator ALWAYS requires that the policy is satisfied at every
time point. The interval attached to the temporal operator
EVENTUALLY specifies that transactions must be reported
within zero to five days.

Assuming that the previous log excerpt represents the
complete event stream, we observe that there are two viola-
tions. First, the event trans(Alice, 132, 2035) that occurred
on day 32 is reported too late, namely on day 38. Second, the
event trans(Bob, 135, 2100) is not reported at all.

4.3.7 Authorizing financial transactions in a banking system

This benchmark is provided by the MonPoly team.
Description of the log The description of the log format is
presented in Sect. 4.3.6. The size of the log is 13MB. The
following property is violated on the log file.
Description of the property This property also formalizes a
compliance policy for a banking system that processes cus-
tomer transactions. It stipulates that executed transactions t
of any customer c must be authorized by some employee e

123

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

before they are executed if the transferred amount a exceeds
$ 2000. The property’s formalization in MFOTL is:

ALWAYS FORALL c, t, a.

trans(c, t, a) AND 2000 < a IMPLIES
ONCE[2, 20] EXISTS e. auth(e, t) .

The event trans(c, t, a) is as in Property 1. The event
auth(e, t) denotes the authorization of the transaction t by
the employee e. Similar to Property 1, the interval [2, 20]
attached to the temporal past-time operator ONCE specifies
the time period in which transactions must be authorized.

4.3.8 Approval policy of business reports within a company

This benchmark is provided by the MonPoly team.
Description of the log The description of the log format is
presented in Sect. 4.3.6. The size of the log is 2MB. The
following property is violated on the log file.aa
Description of the property This property formalizes an
approval policy for publishing business reports within a com-
pany. It stipulates that any report must be approved prior to
its publication. Furthermore, the person who publishes the
report must be an accountant and the person who approves
the publication must be the accountant’s manager. Finally,
the approval must happen within at most ten days before the
publication. The property’s formalization in MFOTL is:

ALWAYS FORALL a, f.
publish(a, f) IMPLIES(
NOT accF (a) SINCE accS(a)

)
AND

ONCE[0, 10] EXISTS m. approve(m, f) AND(
NOT mgrF (m, a) SINCE mgrS(m, a)

)
.

The event publish(a, f) denotes the publication of the
report f by a. The event approve(m, f) denotes that m
approves to publish the report f . The eventaccS(a)marks the
timewhen a starts being an accountant and the event accF (a)

marks the corresponding finishing time. The subformula
NOT accF (a) SINCE accS(a) thus specifies when a is
an accountant. Analogously, the events mgrS(m, a) and
mgrF (m, a)mark the starting and finishing times ofm being
a’s manager.

4.3.9 Withdrawals of users over time

This benchmark is provided by the MonPoly team.
Description of the log The description of the log format is
presented in Sect. 4.3.6. The size of the log is 10MB. The
following property is violated on the log file.
Description of the property This property is rooted in the
domain of fraud detection. It stipulates that the sum of with-
drawals of each user in the last 28 days does not exceed the

limit of $ 10,000. The property’s formalization is:

ALWAYS FORALL s, u.(
s ← SUM a; u. ONCE[0, 28] withdraw(u, a) AND tp(i)

)

IMPLIES
s ≤ 10,000 .

The event withdraw(u, a) denotes the withdrawal by the
user u of the amount a. The event tp(i) denotes that the
current time point is i . This event is used in the formaliza-
tion to distinguish different events withdraw(u, a) with the
same values for u and a in the relevant time window. Each
user’s withdrawals are accumulated into s by the aggregation
operation SUM [15] over the specified time period.

4.3.10 Data usage in Nokia’s Lausanne data-collection
campaign

This benchmark is provided by the MonPoly team.
Description of the log The description of the log format is
presented in Sect. 4.3.6. The log file in this benchmark is
taken from a real-world case study [65] and is publicly avail-
able on the MonPoly’s web page in an anonymized form.
The log is 14GB large. The following property is violated on
the log file.
Description of the property This property is taken from the
case study [65]. Several policies stipulate restrictions on
the usage of data in Nokia’s Lausanne data-collection cam-
paign [65] inwhich sensitive data is uploadedby smartphones
into the database db1 and propagated to the databases db2
and db3, where it is eventually stored anonymized. The prop-
erty used for the competition stipulates that data may be
inserted into db3 only if it was inserted into db2 within the
last minute. The property’s formalization in MFOTL is:

ALWAYS FORALL u, p, d.

insert(u, db3, p, d) AND d �= unknown IMPLIES
ONCE[0, 60) EXISTS u′, q. insert(u′, db2, q, d) .

The event insert(u, db, p, d) corresponds to a logged SQL
insert operation performed on the database db by the database
user u, involving the campaign participant p and the data d.

4.3.11 Early alarm of machine operations

This benchmark is provided by the StePr team.
Description of the log The log file for this benchmark is an
artificially created data set representing the typical shape of
event logs produced during machine operations, e.g., dur-
ing development, testing or productive use. It is inspired by
industrial case studies and projects carried out in the safety
critical domain. TheXMLfile represents a sequence of events
that carry different attributes such as, for example, alarm,

123

E. Bartocci et al.

start2 and time as well as corresponding data values, e.g.,
true, false and 201302, respectively. It includes a number
of traces that are separated by events with name log. That
is, between consecutive traces there is an entry such as the
following.

<event>
<name>log</name>
<field>
<name>id</name>
<value>1</value>

</field>
</event>

Single positions within a trace are represented by events with
name step such as, for example,

<event>
<name>step</name>
<field>
<name>alarm</name>
<value>true</value>

</field>
<field>
<name>init</name>
<value>0</value>

</field>
<field>
<name>time</name>
<value>770576</value>

</field>
</event>

The property is to be evaluated separately on the traces rep-
resented in the log file.
Descriptionof the propertyTheproperty expresses thatalarm
events occurring within a time frame of 60 s after a start2
event constitute an error. That is, the difference of the values
of the attribute time between any two start2/alarm events is
supposed to be at least 60,000 ms.

Formally, considering the log file as a linearly ordered
structure (T,<) of events e ∈ T the task is to compute a
predicate F ⊆ T comprising those positions that exhibit a
failure. We define the predicate by

F(e) :⇔

⎛

⎜⎜⎜⎜
⎝

field(e,alarm) = true ∧
t (e,time) = x ⇒ ∃e′ < e :
t (e′,start2) = true ∧
x − t (e′,time) < 60,000

⎞

⎟⎟⎟⎟
⎠

for all events e ∈ T and all time stamps x where we assume
T to give rise to mapping t : T × A → V that maps lines
and attribute names A to values V .

As an example, consider the sequence:

start2 stop alarm
200,000 230,000 240,000

where the first line indicates the Boolean attributes that hold
and the second line indicates the corresponding values of
the attribute time. The last position in the sequence is vio-
lating the property because of the early alarm. However, the
sequence

start1 alarm start2 stop alarm
100,000 110,000 200,000 230,000 260,000

satisfies the property, i.e., it has no position exhibiting a fail-
ure.

4.3.12 Duration of machine operations

Description of the log This benchmark is based on the same
log file as the one described in Sect. 4.3.11.
Description of the property The benchmark considers pro-
cesses that are started upon start1 events. A stop event stops
all these running processes. Failures are stop events that
occur more than 30 s after the most recent start1 event and if
since then no stop event has occurred. That is, the difference
of the values of the attribute time between two consecutive
start1/stop events is supposed to be at most 30,000 ms.

As is the case with the benchmark in Sect. 4.3.11, the
failure predicate F is such that for all e ∈ T , F(e) holds if
and only if for all time stamps x ∈ V , the following formula
holds:

t (e,stop) = true ∧ t (e,time) = x ⇒ ∃e′ < e :
t (e′,start1) = true ∧
x − t (e′,time) > 30,000 ∧
(∀e′ < e′′ < e :t (e′′,start1) �= true ∧

t (e′′,stop) �= true)

for all events e ∈ T . As an example, consider the sequence

start1 start2 stop alarm
100,000 200,000 230,000 240,000

where at the third position the property is violated because
of the late stop event. However, the sequence

start1 stop start2 stop alarm
100,000 110,000 200,000 230,000 260,000

does not violate the property.

123

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

4.3.13 Maximal error rates of machines operations

Description of the log This benchmark is based on the same
log file as the one described in Sect. 4.3.11.
Description of the property This quantitative property spec-
ifies that the number of errors is at most a fraction 2 · 10−5

(i.e., 0.002%) of the number of performed operation cycles.
The log file provides information about the number of reg-
istered errors and the number of performed cycles at every
position.

An event e ∈ T constitutes a failure if and only if

t (e,error_count) > 0 ∧ t (e,cycle_count) > 0 ∧
t (e,error_count) > 0.00002 · t (e,cycle_count).

4.3.14 Ordering of machine operations

Description of the log This benchmark is based on the same
log file as the one described in Sect. 4.3.11.
Description of the property The trace is divided into groups,
phases and runs, and the latter are parameterized by (pro-
cess) IDs. All processes x have to proceed the three steps
init, run and finish in that order. Then, they may restart and
proceed again. They must always finish. While actions of
an individual process must be correctly ordered, they can be
interleaved with the actions from other processes. For exam-
ple, valid interleavings are

ini t run ini t f inish run f inish
1 1 2 1 2 2

and

ini t ini t run ini t run run f inish f inish f inish
1 2 1 3 3 2 2 3 1

.

A phase is such an interleaved sequence preceded by an
event phaseStart. Whenever a phase starts, all running pro-
cesses started before must have finished. Phases belong to
a group. The beginning of a group of phases is indicated
by an event groupStart, and the end of a group is indi-
cated by an event groupEnd. Groups cannot interleave and
any process event (init, run, finish) and phase start event
must happen within a group, i.e., between two consecutive
groupStart /groupEnd events. The running time of a group
must be smaller than 480 seconds, i.e., the difference of the
corresponding time stamps must respect that constraint.

To formalize these requirements, we split it up into indi-
vidual constraints:

– P1: Groups do not overlap
– P2: Ending groups must have started
– P3: Phases are included in groups

– P4: All processes must have finished before the next
phase

– P5: Init before run
– P6: Run before finish
– P7: Init after finish
– P8: Init, run, finish not outside group
– P9: Group duration is less than 480 s

We formulate these properties in a combination of Linear-
time Temporal Logic (LTL) and First-order Logic (FO) as
described in [39]. To this end, the log file is interpreted as
sequence of FO structures modelling events and attached
data. Every event e provides an interpretation for the unary
predicate symbols ini t , run, f inish, the Boolean proposi-
tions groupStart , groupEnd, phaseStart and the constant
t ime by

init(x) := 0 < x = t (e,init)

run(x) := 0 < x = t (e,run)

finish(x) := 0 < x = t (e,finish)

groupStart := t (e,group_start) = true

groupEnd := t (e,group_end) = true

phaseStart := t (e,phase_start) = true

t ime := t (e,time)

As above, we assume that the function t maps attributes
and event representations in the log file to the correspond-
ing values. Whenever a field group_start, group_end
or phase_start is not explicitly specified in the log, the
respective value is assumed to be false. We now express the
constraints above by the formulae

P1 = groupStart ⇒ Y(¬groupStart WS groupEnd)

P2 = groupEnd ⇒ Y(¬groupEndSgroupStart)

P3 = phaseStart ⇒ ¬groupEndSgroupStart)

P4 = ∀x phaseStart ⇒ ¬(ini t (x) ∨ run(x))WS f inish(x)

P5 = ∀x run(x) �⇒ Y(¬run(x)Sini t (x))

P6 = ∀x finish(x) �⇒ Y(¬ f inish(x)Srun(x))

P7 = ∀x
init(x) �⇒ Y(¬(ini t (x) ∨ run(x))WS f inish(x))

P8 = ∀x (¬groupStart WS groupEnd)

�⇒ ¬finish(x) ∧ ¬init(x) ∧ ¬run(x)

P9 = ∀x groupEnd∧
(¬groupStartS(groupStart ∧ t ime = x))

�⇒ t ime − x < 480,000)

with the past-time temporal operatorsY (yesterday), Y (weak
yesterday), S (since) and WS (weak since).

123

E. Bartocci et al.

The task is to compute all positions in the log file where
any of these properties is violated.

4.3.15 Existence of a leader Rover

This benchmark is provided by the QEA team.
Description of the log The supplied trace file contains 9756
events in CSV format and satisfies the property.
Description of the property This property relates to the
self-organization of communicating rovers and captures the
situation where (at least) one rover is able to communicate
with all other (known) rovers.

The property states that there exists a leader (rover)
who has pinged every other (known) rover and received an
acknowledgement. The leader does not need to ping itself,
and communication is bidirectional, i.e., any rover can ping
any other rover. For example, the following trace satisfies the
property as B pings A and C and receives an acknowledge-
ment.

ping(B, A).ping(B,C).ack(C, B).ack(A, B)

The following trace is not correct as B does not ping D.

ping(B, A).ping(B,C).ack(C, B).ack(A, B).ping(D, B)

The property can be captured by the following QEA. The
syntax of QEA is described in Sect. 4.2.20.

The automaton structure of this QEA is simple; it detects
the languageping followed byack. The quantifications are
non-trivial. As expected, there is an existential quantification
followed by a universal quantification and the constraint that
r1 and r2 are not equal. The Join statement captures the
fact that the domains of quantification for r1 and r2 should
be equal. This is important as domains of quantification are
extracted from the trace using the alphabet of the automaton
and without this declaration the domains may not be equal.

qea{
Exists(r1) Forall(r2) Where(r1!=r2)

Join(r1 ,r2)
skip(start) { ping(r1,r2) -> pinged

}
skip(pinged){ ack(r2 ,r1) -> success

}
}

4.3.16 Granting resources to tasks

This benchmark is provided by the QEA team.
Description of the log The supplied trace file contains
1,000,002 events in CSV format and violates the property.
There are two errors: 1) a resource is cancelled by a task not
holding it; and 2) a resource is granted to multiple tasks.

Description of the property This benchmark is related to
resource management in a context where resources can be
granted to tasks. The property here is that every resource
should only be held by at most one task at any one time. If
a resource is granted to a task, it should be cancelled before
being granted to another task. This is therefore a mutual
exclusion property.

The property can be captured by the followingQEA. This
quantifies over resources r and uses two free variables t1
and t2 to check mutual exclusion of the task holding the
resource. Note that in the granted state any grant event
leads to failure and a cancel event with a different task will
lead to failure as this is a next state.

qea{
Forall(r)
accept next(free){ grant(t1 ,r) ->

granted }
accept next(granted){

grant(t2 ,r) -> failure
cancel(t2 ,r) if [t1 = t2] -> free

}
}

4.3.17 Nested command messages

This benchmark is provided by the QEA team.
Description of the log The supplied trace file contains 1200
events in CSV format and violates the property.
Description of the property This benchmark relates to a
communication consisting ofcommand andsuccessmes-
sages. The property states that if command with identifier B
starts after command with identifier A has started, then com-
mand Bmust succeed before command A succeeds. It can be
assumed that every command is started and succeeds exactly
once, i.e., this is a property that has been checked separately.

The QEA defining this property is described as follows.
Two commands c1 and c2 are quantified over and the states
none, startedOne and startedTwo indicate whether
command 1 or 2 has started, respectively. Note that the prop-
erty is symmetric, so there are two instances for each pair of
commands reflecting the two orderings of commands.

qea{
Forall(c1 ,c2)
accept next(none){

com(c2) -> none; suc(c2) -> none
com(c1) -> startedOne

}
accept next(startedOne){

com(c2) -> startedTwo
suc(c2) -> none

}
accept next(startedTwo){

suc(c2) -> startedOne
}

}

123

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

It was noted by Klaus Havelund that this QEA could be
rewritten to more accurately reflect the assumption about
commands starting and succeeding exactly once. As for the
benchmark described in Sect. 4.2.23, a modified version of
the property can be found in [52].

4.3.18 Resource lifecycle

This benchmark is provided by the QEA team.
As the benchmark in Sect. 4.3.16, this benchmark is

related to resource management.
Description of the log The supplied trace file contains 1 mil-
lion events in CSV format and violates the property. The
violation occurs due to a resource not being cancelled when
the trace finishes.
Description of the property In this case, the property concerns
the lifecycle of a resource. Implicitly this is with respect to
a single task, i.e., we assume the trace only contains events
from a single tasks interaction. A variant of this property
appears in [52] where the task is also quantified.

The steps of the lifecycle are as follows:

– A resource may be requested
– A requested resource may be denied or granted
– A granted resource may be rescinded or cancelled
– A resource may only be requested when not currently
requested or granted

– A granted resource must eventually be cancelled

This is captured by the following QEAwhich quantifies over
the resource r and captures the lifecycle in the automaton
structure.

qea{
Forall(r)
accept next(free){

request(r) -> requested
}
accept next(requested){

deny(r) -> free
grant(r) -> granted

}
accept next(granted){

cancel(r) -> free
rescind(r) -> granted

}
}

4.3.19 Respecting conflicts of resources

This benchmark is provided by the QEA team.
As the benchmark in Sect. 4.3.16, this benchmark is

related to resource management.
Description of the log The supplied trace file contains 100
2954 events in CSV format and satisfies the property.

Description of the property This benchmark focuses on con-
flicts between resources. It is assumed that conflicts between
resources are declared at the beginning of operation and that
after this point resources that are in conflict with each other
cannot be granted at the same time. It is assumed a resource
cannot be put in conflict with itself.

A QEA for this property is given as follows. It quantifies
over two resources r1 and r2 and detects a conflict decla-
ration between these two resources. After this point, there is
a mutual exclusion between the two resources.

qea{
Forall(r1 ,r2)
accept skip(start){

conflict(r1 ,r2) -> free
conflict(r2 ,r1) -> free

}
accept skip(free){

grant(r1) -> granted1
grant(r2) -> granted2

}
accept next(granted1){

cancel(r1) -> free
}
accept next(granted2){

cancel(r2) -> free
}

}

5 Evaluation: calculating scores

In this section, we present in detail the algorithm to calculate
the final score for each tool. Consider one of the three com-
petition tracks (C, Java, and Offline). Let N be the number
of teams/tools participating in the considered track and L be
the total number of benchmarks provided by all teams. The
maximal number of experiments for the track is N × L . That
is, each team has the possibility to compete on a benchmark.

Then, for each tool Ti (1 ≤ i ≤ N) w.r.t. each benchmark
Bj (1 ≤ j ≤ L), we assign three different scores:

– the correctness score Ci, j ,
– the overhead score Oi, j , and
– the memory-utilization score Mi, j .

In case of online monitoring (Java and C tracks), let E j

be the execution time of benchmark Bj (without monitor).
Note, in the following, to simplicity notation, we assume that
all participants of a track want to compete on benchmark
Bj . Participants can of course decide not to qualify on a
benchmark of their track. In this case, the following score
definitions can be adapted easily.

Several considerations influenced the scoring principles:

– Since several benchmarks are provided in each track,
we wanted to provide participants with the possibility to

123

E. Bartocci et al.

compete on a benchmark or not.We allocated amaximum
number of points that could be gained on a benchmark. In
our opinion, it limited the influence of the failure or suc-
cess on a benchmark and rewarded the overall behavior
of tools on the benchmarks in a track.

– We gave an important emphasis on the correctness of
monitoring verdicts. As such, the scoring mechanism
gives more priority to correctness of verdicts in that
performance is evaluated on a benchmark only when a
tool provides the correct verdict and negative points are
assigned on a benchmark when a tool produces a false
verdict or crashes.

– Within a benchmark, scores are assigned to participants/-
tools based on how better they perform compared to each
other. Moreover, the proportion of points in benchmark
assigned to a tool depends on a performance ratio com-
paring to the average performance of other tools. The
average performance of other tools is computed with the
geometric mean (because we dealt with normalized num-
bers [49]).

5.1 Correctness score

The correctness score Ci, j for a tool Ti running a benchmark
Bj is (an integer) calculated as follows:

– Ci, j = 0, if the property associated with benchmark Bj

cannot be expressed in the specification language of Ti .
– Ci, j = −10, if, in case of onlinemonitoring, the property

can be expressed, but the monitored program crashes.
– Ci, j = −5, if, in case of online monitoring, the property
can be expressed and no verdict is reported after 10×E j .

– Ci, j = −5, if, in case of offline monitoring, the property
can be expressed, but the monitor crashes.

– Ci, j = −5, if the property can be expressed, the tool does
not crash, and the verification verdict is incorrect.

– Ci, j = 10, if the tool does not crash, it allows to express
the property of interest, and it provides the correct veri-
fication verdict.

Note that, in case of a negative correctness score, there
is no evaluation w.r.t. the overhead and memory-utilization
scores for the pair (Ti , Bj).

5.2 Overhead score

The overhead score Oi, j , for a tool Ti running benchmark Bj ,
is related to the timing performance of the tool for detecting
the (unique) verdict. For all benchmarks, a fixed total num-
ber of points O is allocated when evaluating the tools on a
benchmark. Thus, the scoring method for overhead ensures
that

N∑

i=1

L∑

j=1

Oi, j = O.

The overhead score is calculated as follows. First, we com-
pute the overhead index oi, j , for tool Ti running a benchmark
Bj , where the larger the overhead index is, the better.

– In the case of offline monitoring, for the overhead, we
consider the elapsed time till the property under scrutiny
is either found to be satisfied or violated. If monitoring
(with tool Ti) of the trace of benchmark Bj executes in
time Vi , then we define the overhead as

oi, j =
{

1
Vi

if Ci, j > 0,

0 otherwise.

– In the case of online monitoring (C or Java), the overhead
associated with monitoring is a measure of how much
longer a program takes to execute due to runtime moni-
toring. If the monitored program (with monitor from tool
Ti) executes in Vi, j time units, we define the overhead
index as

oi, j =
⎧
⎨

⎩

N
√∏N

l=1 Vl, j
Vi, j

if Ci, j > 0,

0 otherwise.

In other words, the overhead index for tool Ti evaluated
on benchmark Bj is the geometric mean of the overheads
of the monitored programs with all tools over the over-
head of the monitored program with tool Ti .

Then, the overhead score Oi, j for a tool Ti w.r.t. bench-
mark Bj is defined as follows:

Oi, j = O × oi, j
∑N

l=1 ol, j
.

For each tool, the overhead score is a harmonization of the
overhead index so that the sum of overhead scores is equal
to O .

5.3 Memory-utilization score

The memory-utilization score Mi, j is calculated similarly to
the overhead score. For all benchmarks, a fixed total num-
ber of points O is allocated when evaluating the tools on a
benchmark. Thus, the scoringmethod for memory utilization
ensures that:

N∑

i=1

L∑

j=1

Mi, j = M.

123

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

First, we measure the memory-utilization index mi, j for
tool Ti running a benchmark Bj , where the larger memory-
utilization index, the better.

– In the case of offline monitoring, we consider the max-
imum memory allocated during the tool execution. If
monitoring (with tool Ti) of the trace of benchmark Bj

uses a quantity of memory Di , then we define the over-
head as:

mi, j =
{

1
Di

if Ci, j > 0,

0 otherwise,

That is, thememory-utilization index for toolTi evaluated
on benchmark Bj is the geometric mean of the memory
utilizations of the monitored programs with all tools over
the memory utilization of the monitored program with
tool Ti .

– In the case of online monitoring (C or Java tracks), mem-
ory utilization associated with monitoring is a measure
of the extra memory the monitored program needs (due
to runtime monitoring). If the monitored program uses
Di , we define the memory utilization as

mi, j =
⎧
⎨

⎩

N
√∏N

l=1 Dl, j

Di, j
if Ci, j > 0,

0 otherwise.

Then, the memory-utilization score Mi, j for a tool Ti w.r.t. a
benchmark Bj is defined as follows:

Mi, j = M × mi, j
∑N

l=1ml, j
.

5.4 Final score

The final score Fi for tool Ti is then computed as follows:

Fi =
L∑

j=1

Si, j

where:

Si, j =
{
Ci, j if Ci, j ≤ 0,
Ci, j + Oi, j + Mi, j otherwise.

For the results reported in the next section, we set O = C =
M = 10, giving the sameweight to the correctness, overhead,
and memory-utilization scores.

6 Results

In this section, we report on the results of the participants.
The raw experimental data and the scripts submitted by

participants can be obtained by cloning the repository avail-
able at:
https://gitlab.inria.fr/crv14/evaluation.

For each track, we present the scores obtained in each cat-
egory and the final scores achieved by each team, as defined
in Sect. 5. In the following tables, teams are ranked according
to their total scores.

Let us recall that the experiments were conducted on
DataMill [73]. The selected machine was queen, which has
an Intel(R) Core(TM) i7-2600K CPU@ 3.40 GHZ (x86_64
architecture with 8 cores), 7.72 GB of DDR3, and is running
on a Gentoo Linux distribution. We have considered the
Wall-clock time for our measures. Using DataMill guaran-
tees that each tool had the same execution environment, and
it was the only running software during each experiment.
Tools were allowed to leverage the eight available cores.

6.1 Scores for the C track

The detailed scores for the C track are presented in Table 6.
The final scores of the C track are reported in Table 7 and
can be visualized in Fig. 5. The final ranking of the teams is:
first is RiTHM, second is E- ACSL, third is RTC.

As one can observe in Table 7, RiTHM made the differ-
ence over E- ACSL on the overhead score, whereas RiTHM
and E- ACSL have approximately the same correctness and
memory-utilization scores. Moreover, there is an important
gap between the two first tools in this track (RiTHM and E-
ACSL) and RTC. Possible explanations for this discrepancy
are discussed in Sect. 7.

6.2 Scores for the Java track

The detailed scores for the Java track are presented in Table 8.
The final scores of the Java track are reported in Table 9

and can be visualized in Fig. 6.
As one can observe in Table 9, the scores between the

two first highest scores are really close and we call it a draw
betweenQEA and Java- MOP. Thus, the final ranking of the
teams is: firsts areQEA and Java- MOP, second is jUnitRV,
third is Larva. While there is a draw between QEA and
Java- MOP, one can notice that QEA did slightly better on
the memory-utilization score, while Java- MOP did slightly
better on the overhead score. While the scores of the tools do
not differ much in terms of correctness, the rankings are due
to first the overhead score and then the memory score.

123

https://gitlab.inria.fr/crv14/evaluation

E. Bartocci et al.

Table 6 Detailed scores for the C track

RiTHM E- ACSL RTC

Reference to
benchmark
description

Verdict Mem (MB) Ovhd (s) Verdict Mem (MB) Ovhd (s) Verdict Mem (MB) Ovhd (s)

v-score m-score o-score v-score m-score o-score v-score m-score o-score

Section 4.1.1 F 1012756 0.68 N/A N/A N/A N/A N/A N/A

10 10 10 0 0 0 0 0 0

Section 4.1.2 F 1012756 0.68 N/A N/A N/A N/A N/A N/A

10 10 10 0 0 0 0 0 0

Section 4.1.3 F 614168 0.42 N/A N/A N/A N/A N/A N/A

10 10 10 0 0 0 0 0 0

Section 4.1.4 F 614168 0.42 N/A N/A N/A N/A N/A N/A

10 10 10 0 0 0 0 0 0

Section 4.1.5 F 647696 0.69 N/A N/A N/A N/A N/A N/A

10 10 10 0 0 0 0 0 0

Section 4.1.6 F 11916 0.01 F 12980 0.30 F 37040 0.19

10 4.46 9.59 10 4.10 0.16 10 1.44 0.14

Section 4.1.7 F 5388 0.001 F 4320 4.87 F 5984 0.01

10 3.18 9.09 10 3.96 0 10 2.86 0.29

Section 4.1.8 F 4236 0.01 F 4628 2.66 F 5856 0.19

10 3.79 9.52 10 3.47 0.03 10 2.74 0.27

Section 4.1.9 F 4212 N/A F 4312 N/A F 5792 0.01

10 3.70 0 10 3.61 0 10 2.69 10

Section 4.1.10 F 4212 N/A N/A N/A N/A F 1344 N/A

10 2.42 0 0 0 0 10 7.58 0

Section 4.1.11 F 4216 N/A F 6804 N/A F N/A 0.23

10 6.17 0 10 3.83 0 10 0 10

Table 7 Scores for the C track
Rank name Team score Correctness score Overhead score Memory score Total score

1 RITHM- 1 110 78.19 73.72 261.92

2 E- ACSL 100 50.19 68.97 219.16

3 RTC 70 20.70 17.31 108.01

Fig. 5 Graphical representation of the scores for the C track

6.3 Scores for the offline track

The detailed scores for the offline track are presented in
Table 10.

The final scores of the offline track are reported in Table 11
and can be visualized in Fig. 7. The final ranking of the teams
is: first isQEA, second isMonPoly, third is RiTHM, fourth
is StePr.

As one can observe in Table 11, there is not much dif-
ference in terms of correctness score between the three first
tools. There is, however, a noticeable differencebetween each
of the three first tools in terms of global score. One can also
notice that the difference between QEA and MonPoly was
made on the overhead score.

123

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

Ta
bl
e
8

D
et
ai
le
d
sc
or
es

fo
r
th
e
Ja
va

tr
ac
k

R
ef
er
en
ce

to
be
nc
hm

ar
k

de
sc
ri
pt
io
n

L
a
rv

a
jU

ni
t
R
V

Ja
v
a
M
O
P

Q
E
A

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

Se
ct
io
n
4.
2.
1

F
0.
55

1.
54

F
1.
92

6.
08

F
1.
94

0.
17

F
2.
65

0.
20

10
1.
95

2.
66

10
2.
70

0.
14

10
2.
68

4.
96

10
1.
96

4.
35

Se
ct
io
n
4.
2.
2

F
0.
58

1.
56

F
7.
75

6.
86

F
2.
59

0.
21

F
2.
70

0.
18

10
2.
60

3.
03

10
1.
02

0.
13

10
3.
04

4.
33

10
2.
92

4.
96

Se
ct
io
n
4.
2.
3

F
0.
66

1.
56

F
1.
92

3.
74

F
9.
03

0.
22

F
5.
24

0.
24

10
4.
54

2.
11

10
4.
99

0.
28

10
1.
06

4.
66

10
1.
83

4.
40

Se
ct
io
n
4.
2.
4

F
0.
69

1.
56

F
1.
92

8.
63

F
9.
04

0.
32

F
2.
00

0.
18

10
9.
05

0.
89

10
4.
20

0.
12

10
0.
89

3.
35

10
4.
02

5.
84

Se
ct
io
n
4.
2.
5

F
0.
95

1.
57

F
1.
92

8.
57

F
9.
69

0.
73

F
2.
64

0.
22

10
10
.9
7

0.
83

10
4.
76

0.
17

10
0.
94

2.
05

10
3.
46

6.
83

Se
ct
io
n
4.
2.
6

T
0.
59

1.
57

T
27
.9
4

1.
56

T
1.
94

0.
20

T
3.
30

0.
23

10
5.
16

1.
85

10
0.
34

0.
59

10
4.
92

4.
70

10
2.
89

4.
11

Se
ct
io
n
4.
2.
7

T
0.
65

1.
58

T
30
8.
67

22
.9
3

T
1.
94

0.
20

T
2.
65

0.
25

10
7.
10

1.
36

10
0.
03

0.
04

10
4.
97

5.
19

10
3.
64

4.
12

Se
ct
io
n
4.
2.
8

T
0.
05

21
73
.2
6

T
24
4.
27

49
.9
4

T
32

.2
4

26
.2
7

T
5.
85

25
.9
9

10
16
2.
39

0.
29

10
0.
19

2.
06

10
1.
46

3.
92

10
8.
06

3.
97

Se
ct
io
n
4.
2.
9

T
0.
64

1.
55

T
29
1.
57

24
.7
9

T
1.
94

0.
20

T
4.
59

0.
23

10
5.
16

2.
08

10
0.
04

0.
04

10
5.
55

4.
98

10
2.
34

4.
34

Se
ct
io
n
4.
2.
10

T
1.
13

1.
56

T
68
0.
19

10
0.
57

T
2.
58

0.
24

T
11
0.
33

1.
26

10
7.
76

2.
45

10
0.
03

0.
02

10
7.
35

7.
45

10
0.
17

1.
40

Se
ct
io
n
4.
2.
11

F
0.
10

48
.0
6

F
N
/A

2.
98

F
5.
17

0.
79

F
4.
53

2.
04

10
40
.9
3

0.
56

10
0

1.
59

10
4.
41

5.
99

10
5.
04

2.
32

123

E. Bartocci et al.

Ta
bl
e
8

co
nt
in
ue
d

R
ef
er
en
ce

to
be
nc
hm

ar
k

de
sc
ri
pt
io
n

L
a
rv

a
jU

ni
t
R
V

Ja
v
a
M
O
P

Q
E
A

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

Se
ct
io
n
4.
2.
12

N
/A

N
/A

N
/A

F
N
/A

0.
51

F
5.
81

2.
23

F
8.
41

3.
24

0
0

0
10

0
7.
21

10
5.
91

1.
65

10
4.
09

1.
14

Se
ct
io
n
4.
2.
13

F
0.
10

35
.7
8

F
N
/A

0.
36

F
7.
10

25
.2
2

F
5.
20

25
.3
3

10
3.
87

4.
37

10
0

9.
63

10
2.
38

0.
14

10
3.
25

0.
14

Se
ct
io
n
4.
2.
14

F
0.
56

1.
57

F
N
/A

1.
61

F
2.
58

0.
18

F
3.
23

0.
22

10
2.
58

3.
57

10
0

0.
55

10
3.
57

4.
94

10
2.
86

3.
95

Se
ct
io
n
4.
2.
15

F
0.
03

26
06
.5
8

F
N
/A

7.
58

F
64
7.
19

87
.0
0

F
83
7.
29

19
0.
89

10
84
1.
28

3.
03

10
0

8.
85

10
3.
93

0.
77

10
3.
04

0.
35

Se
ct
io
n
4.
2.
16

F
0.
06

15
39
3.
22

T
N
/A

N
/A

F
10
01

.6
9

16
4.
00

F
82
9.
59

21
7.
27

10
72
1.
39

3.
86

−5
0

0
10

2.
78

5.
66

10
3.
36

4.
28

Se
ct
io
n
4.
2.
17

T
/O

0
N
/A

T
71
7.
92

88
.3
5

T
80
1.
15

24
2.
00

T
84
4.
54

28
8.
08

-5
N
/A

0
10

3.
64

5.
98

10
3.
26

2.
18

10
3.
10

1.
83

Se
ct
io
n
4.
2.
18

T
/O

0
N
/A

T
69
7.
42

11
3.
63

T
79
5.
49

23
7.
00

T
81
9.
92

88
9.
63

-5
N
/A

0
10

3.
67

6.
22

10
3.
21

2.
98

10
3.
12

0.
79

Se
ct
io
n
4.
2.
19

T
/O

0
N
/A

T
N
/A

N
/A

F
64

9.
83

94
.0
0

F
82
0.
52

17
0.
31

-5
N
/A

0
-5

0
0

10
5.
58

6.
44

10
4.
42

3.
56

Se
ct
io
n
4.
2.
20

F
0.
16

27
.2
2

F
N
/A

3.
68

F
58

.2
7

3.
16

F
23

.0
7

0.
62

10
13
5.
98

1.
08

10
0

1.
22

10
2.
53

1.
42

10
6.
39

7.
20

Se
ct
io
n
4.
2.
21

T
0.
29

70
.1
2

T
86
.0
4

8.
8

T
26
7.
45

5.
64

T
14
2.
74

5.
29

10
16
0.
62

2.
18

10
4.
06

2.
30

10
1.
31

3.
59

10
2.
45

3.
82

Se
ct
io
n
4.
2.
22

T
0

68
82
.5
8

T
30
0.
2

49
.9

T
30
9.
00

6.
08

T
15
6.
66

5.
59

10
26
7.
43

2.
24

10
2.
00

0.
55

10
1.
94

4.
53

10
3.
82

4.
92

Se
ct
io
n
4.
2.
23

N
/A

N
/A

N
/A

F
N
/A

2.
92

F
39

.8
7

1.
58

F
28

.7
1

0.
72

0
0

0
10

0
1.
45

10
4.
19

2.
67

10
5.
81

5.
88

123

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

Table 9 Scores for the Java
track

Rank Team name Correctness score Overhead score Memory score Total score

1 QEA 230 84.50 82.01 396.51

1 JavaMOP 230 88.56 77.89 396.45

2 jUnitRV 200 49.15 31.67 280.82

3 Larva 165 7.79 38.43 211.22

Fig. 6 Graphical representation of the scores for the Java track

7 Lessons learned and discussion

Comparison with other competitions Over the past fif-
teen years, the arise of several software tool competitions
[2,21,54,55,59,84] has deeply contributed to advance the
state of the art in the computer-aided verification technology.
The international SAT solver competition [59] is a pioneer
example with a long track record of editions starting from
2002. The aim of this competition is to determine as quickly
as possible whether a boolean formula expressed in conjunc-
tive normal form (CNF) is satisfiable or not. If the formula is
satisfiable, the tool should return also a correct assignment.
If the returned assignment is incorrect, the tool is disqual-
ified. The organisers provide three different categories of
benchmarks: industrial, crafted and randombenchmarks.The
performance is evaluated by measuring the CPU time neces-
sary for each tool to return an answer. In the recent editions,
the organisers provide also a wall-clock time within which a
tool can use all the available resources (for example multiple
cores) to provide the correct answer. In SAT competition,
the jury is the responsible of choosing the final benchmarks.
This is different in CRV where each team can provide up
to five benchmarks to challenge the other teams, highlight-
ing the bottlenecks of the other teams’ tools. Furthermore,
during the CRV training phase each team has the possibility
to improve the development of their tools using new bench-
marks that were not considered before.

The success of the SAT competitions has inspired other
initiatives such as the Satisfiability Modulo Theories Com-
petitions (SMT-COMP) [2] started in 2005. The challenge of

SMT-COMP is to efficiently check the satisfiability of first-
order formula modulo a background theory. In this case, the
chosen theory strictly depends on the nature of the problem
to consider (i.e., arrays, bit-vectors, uninterpreted functions,
etc.). A major challenge for the SMT community has been to
devise a common input language for their tools that could
accommodate different theories and to express their syn-
tax and semantics. This goal was achieved in 2004 with the
release of SMT-LIB a standard input language that is now
used as common format for the selected benchmarks in SMT-
COMP.

One important difference of CRV with SMT-COMP and
the SAT competition is the lack of a common input lan-
guage for the participating tools. In CRV, a benchmark unit
includes a program or a trace and a property to be mon-
itored. Properties can be expressed using different formal
specification languages more or less expressive and compu-
tationally complex to be monitored. The interplay between
the allowed expressiveness and the monitoring complexity
plays an important role in CRV competition. Some tools may
result extremely efficient in detecting simple temporal behav-
iors, but then they may lack the necessary support to detect
more complex properties and vice versa. One of the open
challenges for CRV remains the possibility to have a com-
mon formal specification language that is general enough to
express all the other common formal specification languages
used in the RV community.

In the area of software verification, there are three related
competitions that have been recently introduced: SV-COMP
[21], VerifyThis [55] and RERS Challenge [54]. SV-COMP
initiated in 2011 within TACAS [1] community with the
aim to compare tools for software model checking. Bench-
marks are provided as C programs, while the requirements to
check are provided in terms of linear temporal logic formu-
las. SV-COMP targets tools for the exhaustive exploration
of all program behaviors. On the contrary, CRV is dedicated
to monitoring tools analyzing only a single program’s exe-
cution using runtime and offline verification techniques. In
SV-COMP the memory utilization is not taken in consid-
eration and the time needed to verify a property does not
affect the program execution itself since the verification pro-
cess is separated from the program execution. The runtime
verification tools competing in CRV introduce instead an
overhead for themonitored program and they consumemem-
ory resources that could affect the execution of the program

123

E. Bartocci et al.

Ta
bl
e
10

D
et
ai
le
d
sc
or
es

fo
r
th
e
of
fli
ne

tr
ac
k

R
ef
er
en
ce

to
be
nc
hm

ar
k

de
sc
ri
pt
io
n

R
iT
H
M

M
on
Po

ly
St

eP
r

Q
E
A

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

Se
ct
io
n
4.
3.
1

F
99
3

0.
60

F
13

0.
13

F
29

.5
3

0.
90

F
4.
53
5

0.
24

10
0.
03

1.
12

10
2.
31

5.
32

10
1.
02

0.
75

10
6.
64

2.
81

Se
ct
io
n
4.
3.
2

F
99
3

0.
60

F
12
28

8.
40

F
64
5.
17

8.
87

F
33

.3
0

3.
58

10
0.
30

7.
67

10
0.
24

0.
55

10
0.
46

0.
52

10
8.
99

1.
28

Se
ct
io
n
4.
3.
3

F
61
4

0.
98

F
13

0.
12

F
31

.2
6

0.
91

F
4.
53

0.
19

10
0.
05

0.
63

10
2.
32

5.
41

10
0.
97

0.
68

10
6.
66

3.
28

Se
ct
io
n
4.
3.
4

F
61
4

0.
98

F
16
96

15
.8
0

F
62
2.
30

21
.1
0

F
51
7.
07

12
.2
2

10
2.
83

8.
41

10
1.
02

0.
52

10
2.
79

0.
39

10
3.
36

0.
68

Se
ct
io
n
4.
3.
5

F
62
8

0.
99

F
54
4

5.
09

F
27
4.
29

7.
77

F
32

.9
4

3.
71

10
0.
43

6.
29

10
0.
49

1.
24

10
0.
97

0.
80

10
8.
11

1.
68

Se
ct
io
n
4.
3.
6

N
/A

N
/A

N
/A

F
36

.0
0

5.
95

F
64
5.
43

41
.7
3

F
5.
19

0.
26

0
0

0
10

1.
25

0.
41

10
0.
07

0.
06

10
8.
68

9.
53

Se
ct
io
n
4.
3.
7

N
/A

N
/A

N
/A

F
20

1.
33

F
25
5.
48

96
.0
0

F
4.
53

0.
25

0
0

0
10

1.
82

1.
56

10
0.
14

0.
02

10
8.
04

8.
42

Se
ct
io
n
4.
3.
8

N
/A

N
/A

N
/A

F
37
0

33
.5
1

F
70
6.
26

21
.4
1

F
7.
75

0.
29

0
0

0
10

0.
20

0.
08

10
0.
11

0.
13

10
9.
69

9.
79

Se
ct
io
n
4.
3.
9

N
/A

N
/A

N
/A

F
73

.0
0

1.
53

F
45
7.
34

3.
67

F
55
2.
08

2.
58

0
0

0
10

7.
74

4.
98

10
1.
24

2.
07

10
1.
02

2.
95

Se
ct
io
n
4.
3.
10

N
/A

N
/A

N
/A

F
16

.0
0

33
0.
80

F
72
1.
22

94
7.
00

F
59
35

.9
0

15
37

.3
0

0
0

0
10

9.
76

6.
39

10
0.
22

2.
23

10
0.
03

1.
38

Se
ct
io
n
4.
3.
11

T
14
.2
7

5.
40

T
13

.0
0

5.
05

T
63
4.
99

10
.8
4

T
12
7.
62

4.
51

10
4.
48

2.
65

10
4.
92

2.
84

10
0.
10

1.
32

10
0.
50

3.
18

Se
ct
io
n
4.
3.
12

F
14
.2
7

0.
90

F
13

.0
0

0.
80

F
33
3.
01

2.
93

F
30

.3
3

0.
80

10
3.
83

2.
80

10
4.
20

3.
17

10
0.
16

0.
86

10
1.
80

3.
17

Se
ct
io
n
4.
3.
13

F
14
.2
7

7.
20

F
13

.0
0

1.
04

F
50
1.
91

3.
20

F
30

.8
6

1.
05

10
3.
86

0.
59

10
4.
24

4.
08

10
0.
11

1.
32

10
1.
79

4.
01

Se
ct
io
n
4.
3.
14

F
14
.2
8

2.
39

F
13

.0
0

2.
0

F
17
3.
37

2.
91

F
30

.3
3

0.
63

10
3.
77

1.
46

10
4.
14

1.
75

10
0.
31

1.
20

10
1.
78

5.
59

Se
ct
io
n
4.
3.
15

T
15

0.
04

T
17

.0
0

35
3.
00

T
11
2.
56

2.
20

T
29

.7
3

0.
59

10
3.
97

9.
15

10
3.
50

0
10

0.
53

0.
18

10
2.
00

0.
67

Se
ct
io
n
4.
3.
16

F
75
.0
0

40
.9
3

F
13

.0
0

43
2.
00

F
63
1.
58

8.
46

F
25
0.
30

2.
03

10
1.
39

0.
38

10
8.
03

0.
03
6

10
0.
17

1.
85

10
0.
42

7.
73

123

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

Ta
bl
e
10

co
nt
in
ue
d

R
ef
er
en
ce

to
be
nc
hm

ar
k

de
sc
ri
pt
io
n

R
iT
H
M

M
on
Po

ly
St

eP
r

Q
E
A

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

V
er
di
ct

M
em

(M
B
)

O
vh
d
(s
)

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

v-
sc
or
e

m
-s
co
re

o-
sc
or
e

Se
ct
io
n
4.
3.
17

F
14
.0
4

0.
16

F
24

.0
0

3.
06

F
36

.0
1

1.
19

F
29
5.
52

1.
36

10
4.
94

7.
67

10
2.
89

0.
40

10
1.
93

1.
03

10
0.
23

0.
90

Se
ct
io
n
4.
3.
18

F
39
.7
9

5.
18

F
26
75

.0
0

34
05

.0
0

F
62
2.
66

9.
96

F
23
4.
78

2.
04

10
8.
01

2.
47

10
0.
12

0.
37
5

10
0.
51

1.
28

10
1.
36

6.
25

Se
ct
io
n
4.
3.
19

T
14
.0
0

5.
14

T
13

.0
0

26
.2
1

T
49
4.
39

9.
17

T
23
9.
60

3.
54

10
4.
62

3.
12

10
4.
98

0.
61

10
0.
13

1.
75

10
0.
27

4.
53

123

E. Bartocci et al.

Table 11 Scores for the offline
track

Rank Team name Correctness score Overhead score Memory score Total score

1 QEA 190 77.79 71.36 339.15

2 MonPoly 190 39.35 64.19 293.54

3 RiTHM- 2 140 54.40 42.52 236.91

4 StePr 190 18.46 11.93 220.40

Fig. 7 Graphical representation of the scores for the offline track

itself. This is the reason why CRV assigns a score to both the
overhead and the memory utilization.

VerifyThis [55] is another series of competitions dedicated
to program verification and initiated in 2011. In VerifyThis,
the organisers provide to the participants algorithms in a
pseudo-code with an informal specification written in natu-
ral language. The challenge for each team is to formalize the
requirements, implement a prototype and verify whether the
implementation is correct w.r.t. the given requirements. The
available time to accomplish this goal is quite short ranging
between 45 and 90 minutes. The format of VerifyThis com-
petition differs with CRV format because is problem-centred
and focuses more on the skills of the team in formalizing
and solving the problem rather than on the tool characteris-
tics and performance. For this reason, it is even possible for
two different teams to participate with the same tool to the
competition.

The Rigorous Examination of Reactive Systems (RERS)
challenge [54] follows a similar problem-centred approach
of VerifyThis in contrast to a more tool-centred approach
followed in CRV. The goal of the RERS challenge is to eval-
uate the effectiveness of various verification and validation
approaches on reactive systems (RS), focusing on the analy-
sis of a particular class of RS called event-condition-action
(ECA) systems. These systems have transitions for input
events that are guarded by conditions, operates on the internal
state and produce outputs. The RERS challenge consists in
verifying a set of properties on ECA systems: properties can
be reachability properties or Linear Temporal Logic (LTL)

properties. The teams are free to choose the tool and the
method they prefer, and they can also combine different tools
in a toolchain in order to solve the challenge. Another differ-
encewithCRV is the selection of the benchmarks: inCRV the
benchmarks are provided by the participating teams, while
in RERS the benchmarks are automatically generated with a
procedure discussed in [78].
Positive pointsSeveral positive aspects are to be noted regard-
ing the first edition of CRV competition.

– The competition featured 8 distinct teams participating
in the 3 tracks resulting in 11 participating teams in the
tracks.

– The organisers have designed a sensible evaluation
method. This method has been peer-reviewed and val-
idated by the participating teams before the beginning
of the competition. The method has been built upon the
research efforts made in the runtime verification commu-
nity when evaluating runtime verification prototypes.

– Choices needed to be made regarding the classifica-
tion criteria of tracks. Moreover, different tracks could
have been possible: domain of the monitored system,
programming language of the monitor, categories of
specifications, a track on elegance of the specification.
The organisers have arranged the tracks of the com-
petition according to the monitored system: either its
programming language in case of monitoring software or
traces. This reflects the fact inline monitoring has been
so far the most popular RV setting when monitoring soft-
ware.

Negative points Several negative aspects are to be noted
regarding the first edition of CRV competition.

– Significant delays were observed regarding benchmark
submission. These delays were due to the substantial
efforts required to convey the exact semantics of the spec-
ifications submitted. Indeed, as can be expected, some of
the specifications could be interpreted differently by dif-
ferent participants. Moreover, as the participating teams
mainly provided specifications in the input language of
their tools, participants had also to formalize them in the
specification language of their own tool.

123

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

– Delays were also observed during the phases where the
organizers had to prepare the next phases. For instance,
after the benchmark submission phase, a sanity check
had to be performed regarding the submissions of some
participants. Several iterations were needed to unify the
submissions in spite of the provided provided, which was
consequently not constraining enough or ambiguous on
some aspects. We note that building on this observation,
the next edition of the competition learned from this and
for instance defined standard formats for traces [47].

Memory measurement in Java It was not entirely clear how
to measure memory usage for the Java benchmarks. It was
decided that memory used by the JVM should be excluded
and the participants were asked to suggest methods for
recording memory usage. The first proposal was to use Java
Management eXtensions (JMX) to create a separate Java pro-
gram that attached to the running benchmark and queried its
memory usage. For completeness, we include an example
Java program utilizing this method:

public class JMXExample {

private static final String
CONNECTOR_ADDRESS =
"com.sun.management.jmxremote."+
"localConnectorAddress";

public static void main
(String[] args)
throws Exception {
// attach to target VM
VirtualMachineDescriptor vmd =

VirtualMachine.list ().get (0);
VirtualMachine vm = VirtualMachine.
attach(vmd);

JMXConnector jmxc
= getLocalConnection(vm);
MBeanServerConnection mbsc =

jmxc.getMBeanServerConnection ();

MemoryMXBean memory
= ManagementFactory.

getPlatformMXBean(mbsc ,
MemoryMXBean.class);

List <MemoryPoolMXBean > pools =
ManagementFactory.
getPlatformMXBeans(mbsc ,

MemoryPoolMXBean.class);

while (true) {
System.out.println("Used Heap: " +

(memory.getHeapMemoryUsage ().
getUsed () /

1000000f) + "mb");
for (MemoryPoolMXBean pool :
pools) {

System.out.println("Used "
+ pool.getName () +

": " + (pool.getPeakUsage ().
getUsed () /

1000000f) + "mb");
}
System.out.println ();
Thread.sleep (100);

}
}

private static JMXConnector
getLocalConnection

(VirtualMachinevm)
throws Exception

{
Properties props
= vm.getAgentProperties ();

String connectorAddress =
props.getProperty

(CONNECTOR_ADDRESS);
if (connectorAddress == null) {

props = vm.getSystemProperties ();
String home = props.getProperty
("java.home");
String agent = home +
File.separator + "lib" +

File.separator
+ "management -agent.jar";
vm.loadAgent(agent);
props = vm.getAgentProperties ();
connectorAddress =

props.getProperty
(CONNECTOR_ADDRESS);

}

JMXServiceURL url =
new JMXServiceURL

(connectorAddress);
return JMXConnectorFactory.connect
(url);

}
}

However, this approach required a separate JVM to be
started to run this program. As some benchmarks are very
short-lived, this led to the benchmark program terminating
before this method could begin measuring memory utiliza-
tion. An alternative method using the jstat tool (standing
for JavaVirtualMachine StatisticsMonitoringTool)was pro-
posed. This method sampled memory usage every 10ms and
dumped the output into a file, which was then parsed after
the benchmark had run to compute memory utilization. The
script for running a program and recording its memory uti-
lization is given below:

#!/bin/bash

java -cp "lib/*:bin" $1 &> out.log &
pid=$!
jstat -gc $pid 10ms >memory.log

echo "Peak memory was " >> out.log
tail -n +2 memory.log | while read

line; do
count=0
sum =0.0
for entry in $line; do

123

E. Bartocci et al.

if [[count -eq 2 || count -eq 3 ||
count -eq 5 || count -eq 7]];

then
sum=$(bc -l <<< "$entry + $sum")

fi
count=$((count +1))

done
int_sum=$(echo $sum | awk

’{ print int($1) }’)
if [[$int_sum -gt $max]]; then

max=" $int_sum"
echo "$max"

fi
echo $max

done | tail -1 >> out.log

The time taken to parse the memory.log file was non-
negligible. Therefore, it was necessary to perform separate
runs to measure time overhead and memory utilization. Both
approaches make use of the same underlying technology
so should produce similar results. Ideally, a single method
would have been used, but both approaches were used by
different teams in the competition.
Monitoring hardware In the last decade, the increasing com-
plexity of the circuit design has beenmaking their verification
and validation more convenient to perform using hardware
emulation insteadof the classical simulation, a task becoming
very time consuming and expensive for the industry [57,72].

Hardware emulation has opened new interesting chal-
lenges such as how to verify at runtime real-time temporal
properties specified in assertion languages andhow to synthe-
size resource efficient monitoring hardware checking these
properties. FoCs [35] developed by IBM and MBAC [25–
27] developed by Zilic and Boulé are important examples of
tools for generating synthesizable hardware monitors from
Property Specification Language (PSL). In [48], Finkbeiner
et al. present a technique to synthesize monitor circuits from
LTL formulaswith bounded and unbounded future operators.
More recently, Reinbacher et. al. introduce in [76,77] synthe-
sizable hardwaremonitors fromdifferent fragments ofMetric
Temporal Logic (MTL) and Jaksic et al. in [57,58,72,79]
propose several practical techniques for generating Field-
Programmable Gate Array (FPGA) hardware monitors for
Signal Temporal Logic (STL), an extension of MTL han-
dling predicates over the real-values.

The first edition of the CRV competition was entirely ded-
icated to software runtime verification tools.We are currently
exploring the possibility to add a special track for hardware
monitoring tools. However, the problem of comparing per-
formances of hardware monitors opens new challenges. In
particular, all the aforementioned approaches use not only
different specification languages for the property to monitor,
but also different hardware and dedicated third-party soft-
ware for the hardware synthesis, making extremely hard to
assess the real merit of the tools for the automatic monitors
generation.

Toward a general specification language (for the competi-
tion)

– every tool is defined in its own logic that is mathemati-
cally defined but have different semantics

– There is no unified specification that the organizers could
use to provide specifications

– Even if such a specification language existed some tools
would handle only a fragment of such logic, one would
have to provide specs in each fragment in such a way that
the competition is fair.

On the challenges of monitoring C programs In spite of its
maturity and robust industry support, theCprogramming lan-
guage remains a challenging frontier for runtime verification
practitioners. As a close-to-the-metal, performance-driven
language, C offers flexible and fine-grained control over
memory, and avoids the use of burdensome safety features;
the programmer is entrusted with the utmost power and
responsibility. As a consequence, however, there is little that
can be asserted about the behavior of a C program other
than that which requires deep, potentially expensive analy-
sis. However, because the language has long since passed the
threshold of immortality, it is imperative that more scalable
and sophisticated tools and techniques be developed to meet
the needs of the C programming community. However, this
requires that several key challenges be properly addressed.

First, it is necessary to achieve good coverage of the
language’s features and constructs, and this can a very
time-consuming process. Even if one has a highly effi-
cient analysis, insufficient coverage can severely limit the
effectiveness of a tool at more than a few handful of 1000
lines of code in size. On the one hand, given the maturity
of the language, legacy support becomes a concern. The
libraries participating in a mature C project may be stag-
gered chronologically, and when delving into the depths, it
is not uncommon to encounter rarely used built-in functions
like setjmp, keyworded modifiers such as register, and even
the use of the goto statement. To its credit, the C language
strives to be parsimonious in its extensions, but this also
means that it is not uncommon to find highly tailored and
difficult to analyze features such as custom-defined memory
allocators. Furthermore, many dialects of C, such as those
intended for use in embedded environments, often extend the
language with compiler-specific and/or platform-dependent
constructs. What is desired is a standard way of monitoring
C programs, but it is difficult to conceive of a comprehen-
sive solution. As such, tool developers with novel ideas must
either build their work on top of an existing analysis frame-
work or expend considerable time and energy accruing the
necessary technological capital. In short, bringing innovative
analyses to market can require significant investment.

123

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

Second, portability is becoming an increasingly important
issue. In years past, it was enough that a tool could function in
just two or three environments, but these days we are seeing
a proliferation of different kinds of computing environments,
including consumer electronics such as smartphones and
sophisticated embedded environments such as control sys-
tems for avionics and healthcare. In all of these environments,
C is either used directly or provides libraries for other lan-
guages including Java, Perl, and Python. A common feature
of these new environments is a limited tolerance for runtime
overhead, which is challenging from a verification stand-
point. One possible way of reducing that overhead includes
exposing runtime monitoring code in a way that allows for
compiler optimizations, but because not all C compilers are
available in all environments, many cost-saving measures
can actually exacerbate the portability issue. Another way of
controlling the runtime overhead of monitoring C program
is to utilize various parallel algorithms on back-ends such
as graphics processing unit (GPU), field-programmable gate
array (FPGA), etc. A use of such back-ends requires pro-
filing the monitors for obtaining an optimal performance.
Such profiling effort can be prohibitive for scalable run-
time verification because runtime verification techniques are
expected to automate monitor generation, and a need of man-
ual intervention during the profiling effort goes against the
principle of automation. Designing a monitoring framework
that is portable, robust in its safety guarantees, andminimally
expensive remains an open problem.

8 Conclusions

This paper presents the final results of the first international
Competition on Runtime Verification. A preliminary pre-
sentation of the results has been reported during the RV
2014 conference in Toronto, Canada. This paper provides
a comprehensive overview of the teams and their tools, the
submitted programs, traces, and specifications, the method
used to compute the scores, and the final results for each of
the tracks. We expect this report to help the runtime verifica-
tion community in several ways. First, this report shall assist
the future organizers of the competition to build on the efforts
made to organize CRV 2014. Second, the report can also be
seen as an entry point to several benchmarks containing non-
trivial programs and properties. This shall help developers of
tools to assess and experiment with their tools.

Acknowledgements Open access funding provided by TU Wien
(TUW). The competition organizers, E. Bartocci, B. Bonakdarpour,
and Y. Falcone, are grateful to many people. The competition organiz-
ers would like to warmly thank all participants for their hard work, the
members of the runtime verification community who encouraged them
to initiate this work, the Laboratoire d’Informatique de Grenoble and its
IT team for its support, Inria and its GitLab framework, and finally the

DataMill team for providing us with such a nice experimentation plat-
form to run all benchmarks. All the authors acknowledge the support
of the ICT COST Action IC1402 Runtime Verification beyond Mon-
itoring (ARVI). Ezio Bartocci acknowledges also the partial support
of the Austrian FFG project HARMONIA (No. 845631) and the Aus-
trian National Research Network (No. S 11405-N23) SHiNE funded by
the Austrian Science Fund (FWF). The research performed by Klaus
Havelund was carried out at Jet Propulsion Laboratory, California Insti-
tute of Technology, under a contract with the National Aeronautics and
Space Administration. The authors are grateful to the insightful review-
ers who helped improving the quality of this paper.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Abdulla, P.A., Rustan, K., Leino,M. (eds.): Proceedings of TACAS
2011: The 17th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, Volume 6605 of
LNCS. Springer, Berlin (2011)

2. Barrett, C., Deters, M., de Moura, L., Oliveras, Ade, Stump, A.: 6
years of SMT-COMP. J. Autom. Reason. 50(3), 243–277 (2013)

3. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard,
D.E.: Quantified event automata: towards expressive and efficient
runtime monitors. In: Proceedings of FM 2012: The 18th Interna-
tional Symposium on FormalMethods, Volume 7436 of LNCS, pp.
68–84. Springer, Berlin (2012)

4. Bartocci, E., Bonakdarpour, B., Falcone, Y.: First international
competition on software for runtime verification. In: Bonakdarpour
and Smolka [24], pp. 1–9

5. Bartocci, E., Bortolussi, L., Nenzi, L.: A temporal logic approach to
modular design of synthetic biological circuits. In: Proceedings of
CMSB 2013: The 11th International Conference on Computational
Methods in SystemsBiology, Volume 8130 of LNCS, pp. 164–177.
Springer, Berlin (2013)

6. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statis-
tical learning of temporal logic properties. In: Proceedings of
FORMATS 2014: The 12th International Conference on Formal
Modeling and Analysis of Timed Systems, Volume 8711 of LNCS,
pp. 23–37 (2014)

7. Bartocci, E., Falcone,Y.:Runtimeverification and enforcement, the
(industrial) application perspective (track introduction). In: Pro-
ceedings of ISoLA 2016: The 7th International Symposium on
Leveraging Applications of Formal Methods, Verification and Val-
idation: Discussion, Dissemination, Applications, Part II, Volume
9953 of LNCS, pp. 333–338 (2016)

8. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D.,
Zadok, E., Seyster, J.: Adaptive runtime verification. In: Proceed-
ings of RV 2012: The 3rd International Conference on Runtime
Verification, Volume 7687 of LNCS, pp. 168–182. Springer, Berlin
(2012)

9. Bartocci, E., Liò, P.: Computational modeling, formal analysis, and
tools for systems biology. PLoS Comput. Biol. 12(1), e1004591
(2016)

10. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY:
Monitoring usage-control policies. In: Proceedings of RV 2011:
The 2nd InternationalConference onRuntimeVerification,Volume
7186 of LNCS, pp. 360–364. Springer, Berlin (2012)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

E. Bartocci et al.

11. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: Monitoring
data usage in distributed systems. IEEE Trans. Softw. Eng. 39(10),
1403–1426 (2013)

12. Basin,D.,Klaedtke, F.,Müller, S., Zălinescu, E.:Monitoringmetric
first-order temporal properties. J. ACM 62(2), 15:1–15:45 (2015)

13. Basin, D., Klaedtke, F., Zălinescu, E.: Greedily computing asso-
ciative aggregations on sliding windows. Inf. Process. Lett. 115(2),
186–192 (2015)

14. Basin, D.A., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Man-
tel, H.: Scalable offline monitoring. Form. Methods Syst. Des.
49(1–2), 75–108 (2016)

15. Basin, D.A., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring
of temporal first-order properties with aggregations. Form. Meth-
ods Syst. Des. 46(3), 262–285 (2015)

16. Baudin, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Pre-
vosto, V.: ACSL: ANSI/ISO C Specification Language. Version
1.8, March 2014

17. Benameur, A., Evans, N.S., Elder, M.C.: MINESTRONE: testing
the SOUP. In: Kanich, C., Sherr, M. (eds.) In: 6th Workshop on
Cyber Security Experimentation and Test, CSET ’13, Washington,
DC, USA, August 12, 2013. USENIX Association (2013)

18. Berkovich, S., Bonakdarpour, B., Fischmeister, S.: GPU-based
runtime verification. In: 27th IEEE International Symposium on
Parallel andDistributed Processing, IPDPS 2013, Cambridge,MA,
USA, May 20–24, 2013, pp. 1025–1036 (2013)

19. Beyer, D.: Competition on software verification—(SV-COMP). In:
Proceedings of TACAS 2012: The 18th International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems—18th International Conference, Volume 7214 of LNCS,
pp. 504–524. Springer, Berlin (2012)

20. Beyer, D.: Status report on software verification—(competition
summary SV-COMP 2014). In: Ábrahám, E., Havelund, K. (eds.)
Tools and Algorithms for the Construction and Analysis of
Systems—20th International Conference, TACAS 2014, Held as
Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2014, Grenoble, France, April 5–13, 2014. Pro-
ceedings, Volume 8413 of Lecture Notes in Computer Science, pp.
373–388. Springer, Berlin (2014)

21. Beyer, D.: Software verification and verifiable witnesses—(report
on SV-COMP 2015). In: Proceedings of TACAS 2015: The
21st International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, vol. 9035, pp. 401–416.
Springer, Berlin (2015)

22. Blackburn, S.M., Garner, R., Hoffmann, C., Khan, A.M., McKin-
ley, K.S., Bentzur, R., Diwan, A., Feinberg, D., Frampton, D.,
Guyer, S.Z., Hirzel, M., Hosking, A.L., Jump,M., Lee, H.B., Eliot,
J., Moss, B., Phansalkar, A., Stefanovic, D., VanDrunen, T., von
Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java
benchmarking development and analysis. In: Tarr, P.L., Cook,W.R.
(eds.) Proceedings of the 21th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and
Applications,OOPSLA2006,October 22–26, 2006, Portland,Ore-
gon, USA, pp. 169–190. ACM (2006)

23. Boland, T., Black, P.E.: Juliet 1.1 C/C++ and Java test suite. Com-
puter 45(10), 88–90 (2012)

24. Bonakdarpour, B., Smolka, S.A. (eds.): Runtime Verification—5th
International Conference, RV2014, Toronto,ON,Canada, Septem-
ber 22–25, 2014. Proceedings, Volume 8734 of Lecture Notes in
Computer Science. Springer, Berlin (2014)

25. Boulé, M., Zilic, Z.: Incorporating efficient assertion checkers into
hardware emulation. In: Proceedings of ICCD, pp. 221–228. IEEE
Computer Society Press (2005)

26. Boulé, M., Zilic, Z.: Efficient automata-based assertion-checker
synthesis of PSL properties. In: Proceedings of HLDVT, pp. 69–
76. IEEE (2006)

27. Boulé, M., Zilic, Z.: Automata-based assertion-checker synthesis
of PSL properties. ACM Trans. Des. Autom. Electron. Syst. 13(1),
4:1–4:21

28. Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo,
U., Bortolussi, L.: Temporal logic based monitoring of assisted
ventilation in intensive care patients. In: Steffen, B., Margaria, T.
(eds.) Proceedings of ISoLA 2014: 6th International Symposium
On Leveraging Applications of Formal Methods, Verification and
Validation, Volume 8803 of LNCS, pp. 391–403 (2014)

29. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations.
Inf. Process. Lett. 40(5), 269–276 (1991)

30. Chen, F., Meredith, P., Jin, D., Rosu, G.: Efficient formalism-
independent monitoring of parametric properties. In: IEEE/ACM
International Conference on Automated Software Engineering
(ASE’09), pp. 383–394 (2009)

31. Colombo, C., Pace, G., Abela, P.: Safer asynchronous runtime
monitoring using compensations. Form. Methods Syst. Des. 41(3),
269–294 (2012)

32. Colombo, C., Pace, G.J.: Fast-forward runtime monitoring—an
industrial case study. In: Runtime Verification, Third International
Conference, RV 2012, Volume 7687 of Lecture Notes in Computer
Science, pp. 214–228. Springer, Berlin (2012)

33. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based run-
time monitoring of real-time and contextual properties. In: Formal
Methods for Industrial Critical Systems (FMICS), Volume 5596 of
Lecture Notes in Computer Science, pp. 135–149. Springer, Berlin
(2008)

34. Colombo, C., Pace, G.J., Schneider, G.: Larva—safer monitoring
of real-time java programs (tool paper). In: Proceedings of the 2009
Seventh IEEE International Conference on Software Engineering
and Formal Methods, SEFM ’09, pp. 33–37. IEEE Computer Soci-
ety, Washington, DC (2009)

35. Dahan, A., Geist, D., Gluhovsky, L., Pidan, D., Shapir, G., Wolf-
sthal, Y., Benalycherif, L., Kamidem, R., Lahbib, Y.: Combining
system level modeling with assertion based verification. In: Pro-
ceedings of ISQED 2005: Sixth International Symposium on
Quality of Electronic Design, pp. 310–315. IEEE (2005)

36. D’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W.,
Finkbeiner, B., Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: run-
timemonitoring of synchronous systems. In: Proceedings of TIME
2005: The 12th International Symposium on Temporal Represen-
tation and Reasoning, pp. 166–174 (2005)

37. de Moura, L.M., Bjørner, Nikolaj.: Z3: an efficient SMT solver.
In: Ramakrishnan,C.R., Rehof, J. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29–April 6, 2008. Proceedings, Vol-
ume 4963 of Lecture Notes in Computer Science, pp. 337–340.
Springer, Berlin (2008)

38. Decker, N., Leucker,M., Thoma,D.: jUnitRV—adding runtime ver-
ification to jUnit. In Brat, G., Rungta, N., Venet, A. (eds.) NASA
Formal Methods, 5th International Symposium, NFM 2013, Mof-
fett Field, CA, USA,May 14–16, 2013. Proceedings, Volume 7871
of Lecture Notes in Computer Science, pp. 459–464. Springer,
Berlin (2013)

39. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theo-
ries. In: Ábrahám, E., Havelund, K. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems—20th International
Conference, TACAS 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5–13, 2014. Proceedings, Volume 8413 of
Lecture Notes in Computer Science, pp. 341–356. Springer, Berlin
(2014)

40. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories.
Int. J. Softw. Tools Technol. Transf. 18(2), 205–225 (2016)

123

First international Competition on Runtime Verification: rules, benchmarks, tools, and final. . .

41. Delahaye, M., Kosmatov, N., Signoles, J.: Common specification
language for static and dynamic analysis of C programs. In: Pro-
ceedings of SAC ’13: The 28th Annual ACM Symposium on
Applied Computing, pp. 1230–1235. ACM (2013)

42. Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R.,
Smolka, S.A.: On Temporal Logic and Signal Processing. In:
Chakraborty, S., Mukund, M. (eds.) Proceedings of ATVA 2012:
10th International Symposium on Automated Technology for Ver-
ification and Analysis, Thiruvananthapuram, India, October 3–6,
Volume 7561 of Lecture Notes in Computer Science, pp. 92–106.
Springer, Berlin (2012)

43. Drago, I., Mellia, M., Munafò, M.M., Sperotto, A., Sadre, R., Pras,
A.: Inside Dropbox: Understanding personal cloud storage ser-
vices. In: Proceedings of the 12th ACM SIGCOMM Conference
on Internet Measurement, IMC’12, pp. 481–494 (2012)

44. Falcone, Y.: You should better enforce than verify. In: Barringer,
H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.J.,
Rosu, G., Sokolsky, O., Tillmann, N. (eds.) Proceedings of the
1st International Conference on Runtime Verification (RV 2010),
Volume 6418 of Lecture Notes in Computer Science, pp. 89–105.
Springer, Berlin (2010)

45. Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime verification
of safety-progress properties. In: 9th International Workshop on
RuntimeVerification. Selected Papers, vol. 5779, pp. 40–59 (2009)

46. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime ver-
ification. In: Broy, M., Peled, D., Kalus, G. (eds.) Engineering
Dependable Software Systems, Volume 34 of NATO Science for
Peace and Security Series, D: Information and Communication
Security, pp. 141–175. IOS Press, Amsterdam (2013)

47. Falcone, Y., Nickovic, D., Reger, G., Thoma, D.: Second interna-
tional competition on runtime verification—crv 15. In: Runtime
Verification—15th International Conference, RV 2015, Vienna,
Austria, 2015. Proceedings, vol. 9333, pp. 365–382 (2015)

48. Finkbeiner, B., Kuhtz, L.: Monitor circuits for ltl with bounded and
unbounded future. In: Lecture Notes in Computer Science (Includ-
ing Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes inBioinformatics), Volume 5779 of LNCS, pp. 60–75 (2009)

49. Fleming, P.J.,Wallace, J.J.:Hownot to liewith statistics: the correct
way to summarize benchmark results. Commun. ACM 29(3), 218–
221 (1986)

50. Gol, E.A., Bartocci, E., Belta, C.: A formal methods approach to
pattern synthesis in reaction diffusion systems. In: 53rd IEEE Con-
ference on Decision and Control, CDC 2014, Los Angeles, CA,
USA, December 15–17, 2014, pp. 108–113. IEEE (2014)

51. Havelund, K., Goldberg, A.: Verify your runs. In: Meyer, B.,
Woodcock, J. (eds.) Verified Software: Theories, Tools, Experi-
ments, First IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich,
Switzerland, October 10–13, 2005, Revised Selected Papers and
Discussions, Volume 4171 of Lecture Notes in Computer Science,
pp. 374–383. Springer, Berlin (2005)

52. Havelund, K., Reger, G.: Specification of parametric monitors—
quantified event automata versus rule systems. In: Drechsler, R.,
Kühne, U. (eds.) Formal Modeling and Verification of Cyber-
Physical Systems. Springer, Fachmedien Wiesbaden (2015)

53. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.:
The RERS grey-box challenge 2012: analysis of event-condition-
action systems. In: Margaria, T., Steffen, B. (eds.) Leveraging
Applications ofFormalMethods,Verification andValidation.Tech-
nologies for Mastering Change—5th International Symposium,
ISoLA 2012, Heraklion, Crete, Greece, October 15–18, 2012,
Proceedings, Part I, Volume 7609 of Lecture Notes in Computer
Science, pp. 608–614. Springer, Berlin (2012)

54. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Pasare-
anu, C.S.: Rigorous examination of reactive systems—the RERS
challenges 2012 and 2013. STTT 16(5), 457–464 (2014)

55. Huisman, M., Klebanov, V., Monahan, R.: Verifythis 2012—a pro-
gram verification competition. STTT 17(6), 647–657 (2015)

56. Jakobsson,A., Kosmatov,N., Signoles, J.: Fast as a shadow, expres-
sive as a tree: hybrid memory monitoring for C. In: Wainwright,
R.L., Corchado, J.M., Bechini, A., Hong, J. (eds.) Proceedings of
the 30th Annual ACM Symposium on Applied Computing, Sala-
manca, Spain, April 13–17, 2015, pp. 1765–1772. ACM (2015)

57. Jaksic, S., Bartocci, E., Grosu, R., Kloibhofer, R., Nguyen, T.,
Ničković, D.: From signal temporal logic to FPGA monitors. In:
Proceedings ofMEMOCODE 2015: The ACM/IEEE International
Conference on FormalMethods andModels for Codesign, pp. 218–
227. IEEE (2015)

58. Jaksic, S., Bartocci, E., Grosu, R., Ničković, D.: Quantitative mon-
itoring of STL with edit distance. In Proceedings of RV 2016: The
7th International Conference on RuntimeVerification, LNCS, page
to appear (2016)

59. Järvisalo,M.,Berre,D.L.,Roussel,O., Simon,L.: The international
SAT solver competitions. AI Mag. 33(1), 89–94 (2012)

60. Jin, D., Meredith, P.O., Lee, C., Roşu, G.: JavaMOP: efficient para-
metric runtime monitoring framework. In: Proceedings of ICSE
2012: The 34th International Conference on Software Engineer-
ing, Zurich, Switzerland, June 2–9, pp. 1427–1430. IEEE Press
(2012)

61. Jin, D., Meredith, P.O.N, Griffith, D., Roşu, G.: Garbage collection
for monitoring parametric properties. In: Programming Language
Design and Implementation (PLDI’11), pp. 415–424. ACM (2011)

62. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S., Grosu, G.:
Runtime verification with particle filtering. In: Proceedings of RV
2013, The fourth International Conference on Runtime Verifica-
tion, INRIARennes, France, 24–27September, 2013,Volume8174
of Lecture Notes in Computer Science, pp. 149–166. Springer,
Berlin (2013)

63. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C: a software analysis perspective. Form. Asp. Comput.
27(3), 573–609 (2015)

64. Kosmatov, N., Petiot, G., Signoles, J.: An optimized memory
monitoring for runtime assertion checking of C programs. In: Inter-
national Conference on Runtime Verification (RV’13), Volume
8174 of LNCS, pp. 167–182. Springer, Berlin (2013)

65. Laurila, J.L., Gatica-Perez, D., Aad, I., Blom, J., Bornet, O., Do,
T.M.T., Dousse, O., Eberle, J.,Miettinen,M.: Frombig smartphone
data to worldwide research: the mobile data challenge. Pervasive
Mob. Comput. 9(6), 752–771 (2013)

66. Leucker,M., Schallhart, C.: A brief account of runtime verification.
J. Log. Algebr. Program. 78(5), 293–303 (2009)

67. Luo, Q., Zhang, Y., Lee, C., Jin, D.,Meredith, P.O.N, Serbanuta, T.-
F., Rosu, G.: Rv-monitor: efficient parametric runtime verification
with simultaneous properties. In: Bonakdarpour and Smolka [24],
pp. 285–300 (2014)

68. Medhat, R., Joshi, Y., Bonakdarpour, B., Fischmeister, S.: Accel-
erated runtime verification of LTL specifications with counting
semantics. CoRR abs/1411.2239 (2014)

69. Meredith, P.O.N., Jin, D., Griffith, D., Chen, F., Rosu, G.: An
overview of theMOP runtime verification framework. STTT 14(3),
249–289 (2012)

70. Milewicz, R., Vanka, R., Tuck, J., Quinlan, D., Pirkelbauer, P.:
Runtime checking c programs. In: Proceedings of the 30th Annual
ACM Symposium on Applied Computing, pp. 2107–2114. ACM
(2015)

71. Navabpour, S., Joshi, Y., Wu, C.W.W., Berkovich, S., Medhat, R.,
Bonakdarpour, B., Fischmeister, S.: RiTHM: a tool for enabling
time-triggered runtime verification for C programs. In: ACMSym-
posium on the Foundations of Software Engineering (FSE), pp.
603–606 (2013)

72. Nguyen, T., Bartocci, E., Ničković, D., Grosu, R., Jaksic, S.,
Selyunin, K.: The HARMONIA project: hardware monitoring for

123

E. Bartocci et al.

automotive systems-of-systems. In: Steffen, B., Margaria, T. (eds.)
Proceedings of ISoLA 2016: 7th International Symposium On
Leveraging Applications of Formal Methods, Verification and Val-
idation, Volume 9953 of LNCS, pp. 371–379. Springer, Berlin
(2016)

73. Oliveira, A., Petkovich, J.-C., Reidemeister, T., Fischmeister,
S.: DataMill: Rigorous performance evaluation made easy. In:
Proceedings of ICPE2013: The 4thACM/SPEC International Con-
ference on Performance Engineering, pp. 137–149. ACM (2013)

74. Pnueli, A., Zaks, A.: PSL model checking and run-time verifica-
tion via testers. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM
2006: Formal Methods, 14th International Symposium on Formal
Methods, Hamilton, Canada, August 21–27, 2006, Proceedings,
Volume 4085 of Lecture Notes in Computer Science, pp. 573–586.
Springer, Berlin (2006)

75. Reger,G., Cruz,H.C., Rydeheard,D.:MarQ:monitoring at runtime
with QEA. In: Proceedings of the 21st International Conference on
Tools andAlgorithms for theConstruction andAnalysis of Systems
(TACAS’15) (2015)

76. Reinbacher, T., Függer, M., Brauer, J.: Runtime verification of
embedded real-time systems. Form. Methods Syst. Des. 44(3),
230–239 (2014)

77. Reinbacher, T., Rozier, K.Y., Schuman, J.: Temporal-logic based
runtime observer pairs for system health management of real-time
systems. In: Proceedings of TACAS 2014, Volume 8413 of LNCS,
pp. 357–372. Springer, Berlin (2014)

78. Schordan, M., Prantl, A.: Combining static analysis and state tran-
sition graphs for verification of event-condition-action systems in
the RERS 2012 and 2013 challenges. STTT 16(5), 493–505 (2014)

79. Selyunin, K., Nguyen, T., Bartocci, E., Ničković, D., Grosu, R.:
Monitoring of MTL specifications With IBM’s spiking-neuron
model. In: Proceedings of DATE 2016: The 19th Design, Automa-
tion and Test in Europe Conference and Exhibition, pp. 924–929.
IEEE (2016)

80. Signoles, J.: E-ACSL: Executable ANSI/ISO C Specification Lan-
guage, Version 1.5-4, March 2014. http://frama-c.com/download/
e-acsl/e-acsl.pdf

81. Signoles, J.: E-ACSL User Manual, March 2014. http://frama-c.
com/download/e-acsl/e-acsl-manual.pdf

82. Sokolsky, O., Havelund, K., Lee, I.: Introduction to the special
section on runtime verification. STTT 14(3), 243–247 (2012)

83. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K.,
Smolka, S.A., Zadok, E.: Runtime verification with state esti-
mation. In: Proceedings of RV 2011. The Second International
Conference on Runtime verification, San Francisco, CA, USA,
Volume 7186 of Lecture Notes in Computer Science, pp. 193–207.
Springer, Berlin (2011)

84. Sutcliffe, G.: The 5th IJCAR automated theorem proving system
competition—CASC-J5. AI Commun. 24(1), 75–89 (2011)

85. Zink, M., Kyoungwon, S., Gu, Y., Kurose, J.: Characteristics of
youtube network traffic at a campus network—measurements,
models, and implications. Comput. Netw. 53(4), 501–514 (2009)

123

http://frama-c.com/download/e-acsl/e-acsl.pdf
http://frama-c.com/download/e-acsl/e-acsl.pdf
http://frama-c.com/download/e-acsl/e-acsl-manual.pdf
http://frama-c.com/download/e-acsl/e-acsl-manual.pdf

	First international Competition on Runtime Verification: rules, benchmarks, tools, and final results of CRV 2014
	Abstract
	1 Introduction
	2 Phases and rules of the competition
	2.1 Collection of benchmarks
	2.2 Training phase and monitor collection phase
	2.3 Benchmark evaluation phase

	3 Participating teams and tools
	3.1 C track
	3.1.1 RiTHM
	3.1.2 E-ACSL
	3.1.3 RTC

	3.2 Java track
	3.2.1 Larva
	3.2.2 jUnitRV
	3.2.3 JavaMOP
	3.2.4 Monitoring at runtime with QEA (MarQ)

	3.3 Offline track
	3.3.1 RiTHM-2
	3.3.2 MonPoly
	3.3.3 STePr
	3.3.4 Monitoring at runtime with QEA (MarQ)

	3.4 Summary

	4 Benchmarks for the monitoring competition
	4.1 C track
	4.1.1 Maximum chunk size in Dropbox connections
	4.1.2 Changes in the chunk size of Dropbox connections
	4.1.3 Maximum bandwidth of Youtube connections
	4.1.4 Changes in the bandwidth of Youtube connections
	4.1.5 Allowed operations on files and sockets
	4.1.6 Binary search
	4.1.7 Merging arrays
	4.1.8 Quicksort
	4.1.9 Accesses to arrays without off-by-one nor out-of-bounds
	4.1.10 Absence of buffer overflow in a palindrome generator
	4.1.11 Absence of negative pointers in function calls

	4.2 Java track
	4.2.1 Gold users of the financial transaction system
	4.2.2 Initialization in the financial transaction system
	4.2.3 Negative balance in the financial transaction system
	4.2.4 Unique account in the financial transaction system
	4.2.5 Reactivation in the financial transaction system
	4.2.6 Incrementing a counter
	4.2.7 Request and response
	4.2.8 Locking critical resources
	4.2.9 Velocity of an object
	4.2.10 Non-crossing routes
	4.2.11 HasNext on DaCapo Avrora
	4.2.12 Safe usage of locks
	4.2.13 Calling methods the same number of times
	4.2.14 Safe usage of maps with iterators
	4.2.15 HasNext on full DaCapo
	4.2.16 SafeSyncCollection on full DaCapo
	4.2.17 UnsafeIterator on full DaCapo
	4.2.18 UnsafeMapIterator on full DaCapo
	4.2.19 Combination of properties on DaCapo suite
	4.2.20 HasNext on DaCapo Batik
	4.2.21 Safe iterators on DaCapo Batik
	4.2.22 Persistent hashcodes on DaCapo Batik
	4.2.23 Lock ordering on DaCapo Avrora

	4.3 Offline track
	4.3.1 Maximum chunksize of Dropbox connections
	4.3.2 Evolution of the chunksize of Dropbox connections
	4.3.3 Maximum bandwidth for Youtube connections
	4.3.4 Changes in the bandwidth of Youtube connections
	4.3.5 Closing opened files by processes
	4.3.6 Reporting financial transactions of a banking system
	4.3.7 Authorizing financial transactions in a banking system
	4.3.8 Approval policy of business reports within a company
	4.3.9 Withdrawals of users over time
	4.3.10 Data usage in Nokia's Lausanne data-collection campaign
	4.3.11 Early alarm of machine operations
	4.3.12 Duration of machine operations
	4.3.13 Maximal error rates of machines operations
	4.3.14 Ordering of machine operations
	4.3.15 Existence of a leader Rover
	4.3.16 Granting resources to tasks
	4.3.17 Nested command messages
	4.3.18 Resource lifecycle
	4.3.19 Respecting conflicts of resources

	5 Evaluation: calculating scores
	5.1 Correctness score
	5.2 Overhead score
	5.3 Memory-utilization score
	5.4 Final score

	6 Results
	6.1 Scores for the C track
	6.2 Scores for the Java track
	6.3 Scores for the offline track

	7 Lessons learned and discussion
	8 Conclusions
	Acknowledgements
	References

