RitHM: A Modular Software
Framework for Runtime Monitoring
Supporting Complete and Lossy
Traces

by

Yogi Joshi

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2015

© Yogi Joshi 2015

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

Runtime verification (RV) is an effective and automated method for specification based
offline testing as well as online monitoring of complex real-world systems. Firstly, a software
framework for RV needs to exhibit certain design features to support usability, modifiability
and efficiency. While usability and modifiability are important for providing support for
expressive logical formalisms, efficiency is required to reduce the extra overhead at run
time. Secondly, most existing techniques assume the existence of a complete execution
trace for RV. However, real-world systems often produce incomplete execution traces due
to reasons such as network issues, logging failures, etc. A few verification techniques have
recently emerged for performing verification of incomplete execution traces. While some
of these techniques sacrifice soundness, others are too restrictive in their tolerance for
incompleteness.

For addressing the first problem, we introduce RitHM, a comprehensive framework,
which enables development and integration of efficient verification techniques. RitHM’s
design takes into account various state-of-the-art techniques that are developed to opti-
mize RV w.r.t. the efficiency of monitors and expressivity of logical formalisms. RitHM’s
design supports modifiability by allowing a reuse of efficient monitoring algorithms in the
form of plugins, which can utilize heterogeneous back-ends. RitHM also supports exten-
sions of logical formalisms through logic plugins. It also facilitates the interoperability
between implementations of monitoring algorithms, and this feature allows utilizing differ-
ent efficient algorithms for monitoring different sub-parts of a specification.

We evaluate RitHM’s architecture and architectures of a few more tools using architec-
ture trade-off analysis (ATAM) method. We also report empirical results, where RitHM is
used for monitoring real-world systems. The results underscore the importance of various
design features of RitHM.

For addressing the second problem, we identify a fragment of LTL specifications, which
can be soundly monitored in the presence of transient loss events in an execution trace.
We present an offline algorithm, which identifies whether an LTL formula is monitorable
in a presence of a transient loss of events and constructs a loss-tolerant monitor depending
upon the monitorability of the formula.

Our experimental results demonstrate that our method increases the applicability of
RV for monitoring various real-world applications, which produce lossy traces. The extra
overhead caused by our constructed monitors is minimal as demonstrated by application
of our method on commonly used patterns of LTL formulas.

111

Acknowledgements

I am highly obliged by the guidance and immense support given to me by Prof. Se-
bastian Fischmeister and Prof. Borzoo Bonakdarpour. I am highly grateful to them for
providing me the opportunity to pursue research, and the skills, which they inculcated in
me, would support me in future in my professional and personal life. Further, I am highly
thankful to my thesis readers: Prof. Joanne Atlee and Prof. Richard Trefler.

I would also like to thank Dr. Guy Martin Tchamgoue, Ms. Greta Cutulenco, Ramy
Medhat, Shay Berkovich, Wallace Wu, Dr. Samaneh Navabpour, Dr. Carlos Moreno, Dr.
Thomas Reidmester, Yassir Rizwan, Dr. Akramul Azim, Jean-Christophe Petkovich, Ms.
Paula Roser and Ms. Margaret Towell for their invaluable help and support.

Further, I thank University of Waterloo for honoring me with this opportunity to ‘Learn
to learn’. Last but not the least, I am immensely grateful to Prof. Stephen Mann for his
invaluable guidance.

v

Dedication

This is dedicated to Prof. R. D. Ranade - my spiritual teacher, Prof. Sneha Joshi -
my mother, Prof. Ramdas Joshi - my father, Mr. Hrushikesh R. Joshi - my brother, Late.
Mr. Shridhar Joshi - my grandfather, and Mrs. Indumati Joshi, my grandmother.

Without them being there in my life, this would have never been possible.

Table of Contents

List of Tables ix
List of Figures X
1 Introduction 1
1.1 Overview of Runtime Verification 1

1.2 RitHM - A Comprehensive Framework 4
1.3 Runtime Verification of Lossy Traces 5
1.4 Contributions 8
1.5 Organization 10

2 Background and Related Work 11
2.1 Overview of Various RV tools and techniques 11
2.2 Competition on Software for Runtime Verification (CSRV'14). 14
2.3 Discussion e 14
2.4 Preliminaries on Runtime Verification of LTL 17
24.1 Overview of LTL o 17

2.4.2 Finite Path Semantics for LTL 18

3 RitHM Framework 21
3.1 Goals of RitHM’s design 21

vi

3.2 RitHM Framework 22

3.2.1 RitHM Architecture 22
3.2.2 Interoperability of Monitors in RitHM 25
3.2.3 RitHM for RV in Outline Mode 26

3.3 RitHM Plugins 27
3.3.1 Observer Plugins 27
3.3.2 Specification-rewriter Plugins 28
3.3.3 Monitor-synthesizer Plugins, 30
3.3.4 Other Plugins 30
3.3.5 RitHM Usage 31

4 Considerations for RitHM’s Design 33
4.1 The Front-end and Back-end of RitHM 33
4.2 Support for Multiple Logical Formalisms 35
4.3 Support for Monitor Plugins and Multiple Back-ends 36
4.4 Interoperability between RitHM’s Monitors 40
4.5 Evaluation of architectures using ATAM 41
4.5.1 Evaluation of RitHM’s Architecture 42
4.5.2 Evaluation of RiITHM’s Architecture 48
4.5.3 Evaluation of MOP’s Architecture 51
4.5.4 Evaluation of LARVA’s Architecture 52
4.5.5 Discussion 54

5 Case-studies for Monitoring using RitHM 55
5.1 Monitoring Google Cluster Traces 55
5.2 Monitoring Engine Control Unit (ECU) Traces 58
5.3 Lessons Learned 60

vii

6 Problem Description for Loss-tolerant Monitoring

81 MPlayer
8.1.1 Settings
81.2 Results.
8.2 Google Cluster-usage Traces
9 Future Work and Conclusion
9.1 Future Work
9.2 Conclusion
References

6.1
6.2
6.3

Our Model,

Formal Problem Description

Monitorability of LTL formula under Transient Loss of Events

6.3.1 Motivating Examples
6.3.2 Formal Definition L.

Monitoring Lossy Traces

7.1

Synthesis of Loss-tolerant Monitors
7.1.1 Correctness of Loss-tolerant Monitors

7.1.2 Performance

Case-studies for Loss-tolerant Monitoring

viil

62
62
63
65
65
67

69
69
74
76

79
79
79
80
84

87
87
88

89

List of Tables

2.1 Features of RV Tools 12
2.2 Algorithms for Widely Used Logical Formalisms 13
3.1 Propositions Used in the Example 31
4.1 PTLTL and LTL formulas o 36
4.2 Different Scenarios for Usage of RitHM 49
5.1 No. of Tasks and Jobs 56
5.2 LtL Properties for ECU verification 59
8.1 Verification of Google Cluster Data, 85

X

List of Figures

1.1

3.1
3.2
3.3

4.1
4.2
4.3

5.1
2.2

6.1
6.2
6.3

7.1
7.2
7.3
7.4

8.1

General RV Framework

RitHM Architecture and Basic Control flow
RitHM Interoperability of Monitors
RitHM Server

Summary of functionso
Comparison of Monitoring Overhead for PTLTL and LTL Formulas

Comparison of Monitoring Overhead for Parallel and Sequential Algorithms

Comparison of Monitoring Overhead for Google Cluster Traces

Metrics of Engine Control Unit (ECU)

System Model
RV-LTL Monitor for po =p — O0(qUr)
RV-LTL Monitor for o3 =0(p — 0q)

RV-LTL Monitor for p =0(a — Ob) o
Loss-tolerant Monitor for ¢ = (e — Ob)
Comparison of the No. of States

Comparison of the No. of Transitions

Comparison of Verdicts

22
25
27

8.2 Monitoring Overhead
8.3 Dropped Frames vs Lost Events
8.4 Monitoring Overhead of Google Traces

X1

Chapter 1

Introduction

1.1 Overview of Runtime Verification

Activities of software verification and testing constitute one of the most expensive parts
of software development life cycle (SDLC), and their cost accounts for 50 to 75 percent of
the total cost [30]. Issues caused by bugs and failures in the software can further create a
huge financial impact for the software industry. Such loss has affected various application
domains where software components are used. Recently National Institute of Standards
and Technology (NIST) [75] found that around $59.6 billion are lost every year because
of the issues in software systems. Bugs in financial softwares can directly cause monetary
losses as in the case of a $3.45 billion over-payement of tax-credit made by Inland Revenue
(from the United Kingdom) in 2004-2005 [19].

Furthermore, such loss is not limited to monetary considerations, but a loss of human
lives can also occur due to software bugs. Modern embedded systems such as aircrafts and
motor vehicles contain many software components, and the complexity of such software
components in terms of size and functionality has grown recently. The avionics system of
Airbus A380 contain more than 100 million lines of code [77]. The earlier model, Airbus
A330, contains around 20 million lines of code. This shows that the complexity of software
components in safety-critical embedded software is growing at a highly increasing rate.
Consequently, this has increased the effort for testing to ensure the correctness of software
systems. Any failures in such systems due to bugs can be fatal for the people, and such
situations may result in loss of human-lives in addition to the financial losses. Thus, there
has been an evolution of various techniques for effective verification of software for ensuring
its correctness.

To ensure the correctness of software systems, various techniques such as formal ver-
ification and testing have been developed. Formal verification techniques such as model
checking suffer due to the problem of state space explosion [21] as they require construction
of exhaustive models of systems under verification [21]. Further, testing usually requires
ezhaustively covering all relevant execution paths and parts of the code being tested, and
it is often infeasible to obtain such high coverage often due to the increased complexity of
real-world systems. This often results in some execution paths of a code not being tested.
With the growing complexity of software systems, it is highly important to provide scalable
solutions to the problem of ensuring the correctness of such systems.

Runtime Verification (RV) [12, 39] is an automated technique where a monitor checks
at run time whether or not the execution trace of a program satisfies some correctness
properties. Depending on the observation of the monitor, the program can be steered into
a correct state in case of a violation of the correctness criteria. Such online verification
technique is highly useful for safety-critical embedded systems as their behavior can be
validated and corrected at run time. Furthermore, this technique is useful for offline testing
of software systems across multiple domains. Leucker et al. have depicted a taxonomy,
which shows a variety of contexts in which RV can be used to ascertain the correctness
of software systems [52]. This taxonomy highlights the scalability of RV techniques in
various application domains.

A general setup of an RV framework is as shown in Figure 1.1. The details of various
components of this setup are as follows. An observer extracts the current-state of a pro-
gram, and a stream of such states forms an execution trace. Such execution trace, which
is produced by an observer, is consumed by a monitor, which processes the trace to verify
whether it satisfies the specified correctness criteria. Such correctness criteria is described
using a specification language. A monitor-generator synthesizes a set of monitors from a
set of high-level specifications, i.e., the monitor-generator translates the high-level speci-
fications into low-level monitoring procedures. A monitor’s output can be consumed by
the program, and different steering actions can be performed to ensure that the program
conforms to the correctness criteria.

We note that a general RV framework shares many features with compiler frameworks
and database systems. The process in which a compiler translates a high-level code into
low-level code is analogous to the process of synthesizing monitors from high-level spec-
ifications in a RV framework. This process is similar to the query compilation phase of
a database infrastructure. An RV framework involves an additional process of running
the generated monitors in an efficient manner. Although this process of running a set of
monitors is analogous to that of query execution in a database system, the execution of
RV monitors poses some unique challenges because of the extra overhead introduced by

Input Spe.cifications
1

v

F k .
Program eedbac Monitor-generator

Parameters to Extract

'
Extract Trace Create Monitoring Code

I
: | v
- .1
Observer — Monitor

Report Trace———————— b

— Online Data Flow 5]
. - Run
————— > Offline Data Flow — Q‘J

Back-end Platform

Figure 1.1: General RV Framework

the monitors, which run alongside the systems under verification.

Various compiler frameworks such as LLVM [51] have been successful due to their
seminal role in the evolution of software development methods. A development of various
high-level languages using compiler frameworks have enabled the developers to focus on
domain aspects. The automation of low-level code generation has resulted in the reduction
of defects and efforts during the process of software development. The development of
various high-level languages using the compiler frameworks has resulted in huge savings in
terms of the time and the cost of various software engineering tasks. Further, the automated
query compilation techniques of database systems have resulted in huge savings in terms
of money and time for the tasks of large-scale data management. The advanced techniques
of query execution have enabled efficient processing of large-amounts of data.

We note that various proven design features of compiler frameworks and database
systems can be adopted in an RV framework. A generic design of an RV framework (as
shown in Figure 1.1) exhibits the isolation of the monitor generation process from the
monitor execution process. The monitor generation process is generally run offline, i.e.,
before the execution of a program. On the other hand, the monitor execution happens
alongside the execution of the program. Isolation of these components in the design of
an RV setup enables independent optimizations of these tasks. The monitor-generator

incorporates the features for facilitating the enhancement of specification languages, which
we also refer to as logical formalisms. An RV framework needs support of different logical
formalisms for describing specifications. A variety of logical formalisms, which differ in
their expressivity are being used. Further, a single formalism cannot serve for different
use-cases. Additionally, it is important to support multiple logical formalisms to allow a
trade-off between the expressivity and efficiency because less expressive logical formalisms
can often be monitored in a more efficient manner than more expressive ones.

The monitor execution process requires optimizations for efficiency in terms of invoca-
tion and execution overhead of monitors. Such optimizations include the ability of exe-
cuting monitors on different back-end platforms such as multi-core CPU, GPU, FPGAs,
etc. Further, the optimizations for efficient invocation schemes for monitors include buffer-
triggered runtime verifiction (BTRV) [57], time- triggered runtime verification (TTRV) [17],
etc. To reduce the overhead of monitors in terms of execution time and other resources,
different efficient monitoring algorithms are utilized in the monitor execution process.

To enable a reuse of efficient monitoring algorithms, the interoperability between the
different monitoring algorithms is important. Such interoperability between the monitors
allows decomposing a specification into sub-specifications, and such sub-specifications can
be monitored using efficient monitoring algorithms for respective fragments of temporal
logic formalisms. Similar feature is designed in database systems, where a complex query
is decomposed into different sub-queries, which are executed using efficient algorithms.

1.2 RitHM - A Comprehensive Framework

We surveyed various state-of-the-art RV frameworks and tools with respect to the afore-
mentioned design considerations. The survey highlights a need for the development of a
comprehensive framework for runtime verification. To facilitate a development of scalable
RV techniques, we address the problem of identifying the important design features of an
RV framework. With this motivation, we introduce RitHM, a comprehensive framework
for RV. RitHM’s architecture takes into account several important design considerations
for increasing the effectiveness of an RV set-up in terms of following quality attributes:
usability, performance, modifiability and portability. In general, achieving multiple quality
attributes in a simultaneous manner involves trade-offs. Most existing RV tools and frame-
works support only a few of the aforementioned quality attributes. RitHM’s architecture
highlights different trade-offs between these quality attributes along with respective design
decisions.

Various design features of RitHM’s architecture take into account state-of-the-art re-
search on runtime verification. RitHM’s features include support for multiple front-end and
back-end plugins to enable performance optimizations for monitor execution and extensions
of logical formalisms at the front-end. In the context of RV, a front-end is used for de-
scribing a set of specifications using logical formalisms, and the back-end performs a check
to ascertain whether an execution trace satisfies the described specifications. Additionally,
RitHM supports heterogeneous back-ends to take advantage of parallel algorithms for RV.
RitHM also enables interoperability between different instances of monitors to leverage
efficient monitoring algorithms for different fragments of logical formalisms. RitHM sup-
ports different types of plugins and flexible interfaces to facilitate integration into different
software systems. Further, we report the results of experiments, which demonstrate the
importance of various design features of RitHM.

Various advantages of RitHM’s design features are demonstrated via architecture eval-
uation using architecture trade-off analysis method (ATAM) [18]. We also provide eval-
uations of a few other tools using ATAM. These evaluations highlight the importance of
various unique design features of RitHM. To our knowledge, this is one of the first architec-
tural evaluations of a framework in the RV community. We also report the applicability of

RitHM'’s features through case-studies where real-world applications are monitored using
RitHM.

1.3 Runtime Verification of Lossy Traces

RV imposes additional overhead at run time partly due to the techniques upon which
it relies on to extract the traces from the monitored programs. For this purpose, many
techniques have been developed to reduce the overhead of monitoring tools. Sampling-
based techniques [1, 32, 38, 41] periodically extract events from a monitored program.

All these techniques generally trade-off information and overhead, and may produce
incomplete traces as some events may not be observed. However, many other reasons
may cause a system to produce execution traces with a loss of events. For example, if an
execution trace is being sent over a network to a remote monitor, a network failure may
cause loss or even corrupts some events in the trace. Thus, most network protocols such as
transmission control protocol (TCP) [23] and trivial file transfer protocol [73] incorporate
various loss tolerance techniques such as automatic repeat request (ARQ) [30] and forward
error correction (FEC) [15]. Data loss is also prevalent in sensor networks and other
wireless communication systems due to noise, collision, unreliable link, weak signal, and
unexpected damages [50, 66]. When not sent over network, a logging failure [7] can also

5

cause events to be lost. Even a sound monitor, designed for complete traces, may end up
delivering an incorrect verdict for a given specification when it processes an incomplete
execution trace . It is therefore important to develop runtime monitors that yield sound
verdict even in presence of an execution trace with a loss of events.

While most RV techniques assume the existence of complete traces [14, 11, 12 13], a
few approaches have recently been developed for traces with a loss of sequence of events.
Stoller et al. [71] proposed the concept of runtime verification with state estimation (RVSE),
where the probability of whether a specification is satisfied or violated by a program is
calculated by extending the classic forward algorithm for Hidden Markov Model (HMM).
However, this approach is limited by the requirement of a comprehensive set of execution
traces used to learn the corresponding HMM. Thus, if there is no execution trace that
violates the specification, then a monitor when used along with corresponding learned
HMM, may deliver an unsound verdict for a specification. Basin et al. [7] showed that not
all logging failures can affect the truth-values of the formulas in a particular fragment of
metric first-order temporal logic (MFOTL). As per their approach, if the truth-value of a
formula cannot be determined due to logging failures, then the three-valued semantics are
used to express the uncertainty about the verdict. Further, if lost events of a trace are
recovered, then such uncertainty can be resolved. Consequently, this approach relies on
run time conditions, which are determined by execution traces, and therefore lacks a clear
classification of properties depending upon their monitorability on incomplete traces.

We present a novel approach for the problem of runtime verification of LTL (Linear
Temporal Logic) [05] formulas on execution traces with loss of a sequence of events. We
identify a fragment of LTL specifications which can be soundly monitored in presence of
transient loss of a sequence of events in an execution trace. Evaluation of LTL formulas
can be sensitive to loss of events. A finite loss of events results in a failure of a monitor to
observe and process the corresponding events. Consequently, such a monitor may deliver an
unsound verdict for the monitored LTL formulas, which can be either violated or satisfied
over a finite execution trace. For example, a guarantee [31] formula which says that a
thread should eventually execute the system call pthread_exit can be expressed in LTL as
O thread_exit. If a monitor does not observe the event when the thread calls pthread_exit,
then it would deliver an incorrect verdict saying that the specification is not satisfied by the
program. Similar arguments can be provided for safety [31] and obligation [31] formulas.

On the other hand, some LTL formulas can never be satisfied or violated over finite
traces. For example, an LTL formula OO (garbage_collector_invoked) captures the idea
that a garbage collector should be invoked infinitely often. A monitor for this formula can
tolerate a finite loss of a sequence of events. Intuitively, even if finitely many events about
the invocation of the garbage collector are not observed, the monitor can still determine

the verdict of this LTL formula based upon the observation of subsequent events. When a
garbage collector is invoked, it is guaranteed that it collects the garbage accumulated in the
past where the execution trace was not observed. Provided that the loss of a sequence of
events is transient, i.e., the monitor can eventually process the next stream of events from
the execution trace after a finite loss, the LTL formula can be verified successfully on the
execution trace in spite of the finite loss of a sequence of events. Although such formulas
can never be satisfied or violated by finite traces, Falcone et al. [31] have shown that they
are monitorable. Moreover, such formulas belong to the commonly used patterns [29] of
LrL formulas. A study by Bauer et al. [141] shows that many of the commonly used LTL
formulas can never be satisfied or violated by finite traces.

Falcone et al. [31] proposed that if a monitor’s verdict for a good (finite) trace differs
from its verdict for a bad (finite) trace, then the corresponding formula is deemed as
monitorable because the verdict can then be used to execute different steering actions.
The described approach uses the four-valued semantics for LTL. For example, consider
an LTL formula O (job_killed — { job_resubmitted). If a finite trace ends when only
job_killed is T, then the verdict of the monitor for this trace is L, i.e., ‘presumably false’.
On the other hand, if a finite trace ends when job_resubmitted is T, then the verdict for
the monitor for this trace is T, i.e., ‘presumably true’. Such verdicts then can be used to
take further recovery actions for the job.

Building on these results, we show that some LTL properties can indeed be monitored
in spite of a finite loss of events in an execution trace. We describe an algorithm, which
finds whether an LTL formula can be successfully monitored in case of a transient loss of
events. Since a transient loss is not permanent, it is ensured that a system that encounters
such a loss eventually recovers from the loss to observe subsequent events. Thus, after a
transient loss of events, the monitor also eventually processes the next stream of events.
This consideration holds for most real-world systems, in which recovery mechanisms are
implemented to ensure that a loss is not persistent. Furthermore, we extend the monitor
construction method of Bauer et al. [11] to synthesize monitors for monitorable formulas
in presence of a transient loss of a sequence of events in an execution trace. Additionally,
it is expected that a monitor that process an incomplete execution trace should produce
a verdict, which aligns with that of a monitor that processes the corresponding complete
trace. The verdict should then remain the same even when the lost events in the trace
are recovered. To capture this notion, we introduce the concept of monotonicity. Thus,
a monitor processing an incomplete trace is monotonic iff its verdict always matches the
verdict of a monitor which processes the corresponding complete execution trace irrespec-
tive of whether the events lost in the past are recovered. We note that the probabilistic
monitoring approaches [70, 74] do not exhibit this behavior as the verdict of their monitors

may change in case lost events are recovered.

We further describe an example of a similar formula, which depicts a typical scenario
during usage of the commonly used network protocols. The LTL property is O (request —
O response). Informal description of this property states that it is always a case that a
request is eventually followed by a response. This property can be monitored in spite of a
finite loss of events in the execution trace provided that the monitor observes at least one
request or response action in the system after the finite loss of events. The observation
of at least one request or response in the subsequent stream of events ensures that the
monitor produces a sound verdict in spite of not being able to process a finite number of
events in the execution trace. Thus, the LTL formula is monitorable in spite of a finite loss
of events provided certain conditions are met by the execution trace.

1.4 Contributions

The contributions' of this thesis can be summarized as follows.

Design Considerations for RV frameworks: We analyze various state-of-the-art RV
tools and frameworks along with various monitoring algorithms. Based on this survey, we
identify various important design features of RV frameworks. We note that modifiability,
efficiency, usability and portability are the important quality attributes of an RV setup.

A Design of RitHM Framework: Based upon the identification of the quality at-
tributes, we develop a design for RitHM, a comprehensive framework for runtime verifi-
cation. We perform various experiments to validate the feasibility and importance of the

proposed design features. Based upon the evidences, we provide an implementation of
RitHM framework.

An Evaluation of RitHM’s Architecture: In addition to the empirical evaluation,
we performed evaluations of RitHM’s architecture using architecture trade-off analysis
method (ATAM) during the design phase. Additionally, we evaluated few other tool’s
architecture using ATAM. This is one of the first architectural evaluations frameworks in
the RV community. We note sensitivity and trade-off points of the architectures during
our evaluation.

"'Work presented in this thesis is submitted (or is under preparation for submission) in conference papers
and journals.

Empirical Evaluation of RitHM: We demonstrate the applicability and importance
of various design features of RitHM using a few case-studies. We perform monitoring of
Google cluster traces and the traces of an Engine Control Unit (ECU) of a Toyota 2JZ
engine. A use of interoperability of parallel and sequential monitoring algorithms demon-
strates a significant gain in terms of performance during the monitoring of Google cluster
traces. Moreover, the importance of usability feature of RitHM’s front-end components
is demonstrated by a use of rewriting feature, where high-level specifications for the ECU
traces are rewritten into corresponding low-level specifications. Thus, users of RitHM can
use this feature to abstract the complexity of describing specifications in low-level specifi-
cation languages.

Identifying Monitorability Criteria for Loss-tolerant Monitoring: As a second
part of the thesis, we describe the importance of the problem of runtime verification of lossy
execution traces, which often result due to network failures, partial instrumentation, log-
ging failures, etc. Further, we describe a model, where execution traces exhibit a transient
loss of events. Under this model, we identify the monitorability criteria for LTL formulas.

Constructing Loss-tolerant LTL Monitor: We present an offline algorithm to con-
struct loss-tolerant monitors for LTL formulas. We evaluate the complexity of our algorithm
by applying it on commonly used patterns of LTL formulas. This application shows the
effectiveness of the constructed monitors in terms of memory usage. We also prove the
correctness of the monitors constructed using our algorithm.

Monotonicity: We define the concept of monotonicity of a monitor’s verdict under a
transient loss of events. This notion evaluates loss-tolerant monitors based upon a possi-
bility of the invalidation of their verdicts in the event of a recovery of lost events in traces.
In other words, the verdict of a monitor that processes an incomplete trace should match
that of a monitor that processes the corresponding complete execution trace, irrespective
of whether the lost events are recovered. We prove that the monitors constructed using
our method provide a correct verdict irrespective of whether a recovery of the lost events
is possible. We compare other approaches w.r.t. the notion of monotonicity and report
our findings.

Empirical Evaluation for Loss-tolerant Monitoring: We describe the applicability
of our approach by two case studies. Our results show that our approach increases the
applicability of runtime verification for real-world applications, which often produce lossy

traces. Additionally, our approach can be used to control the monitoring overhead for
some quality-of-service-aware software applications such as MPlayer.

1.5 Organization

The organization of this thesis is as follows. In Chapter 2, we present the details about
related work about various tools for runtime verification and the related discussion. We
also present the background information for our work on runtime verification in presence
of transient loss of events in an execution trace.

In Chapter 3, we present design and architecture of RitHM. In Chapter 4, we provide
the details of various design considerations for RitHM along with different experiments,
which confirm our claims about the design features. Furthermore, we report the results of
evaluation of architectures using ATAM. In Chapter 5, we provide details about various
case studies in which RitHM is used to monitor real-world datasets. Further, we discuss
the details about the lessons we learned during the implementation of RitHM.

In Chapter 6, we discuss the formal problem description and the criteria for monitora-
bility of an LTL formula in presence of transient loss of events in an execution trace. In
Chapter 7, we provide a high level description of our solution. Further, we present an
algorithm for verifying the monitorability and synthesizing a loss-tolerant monitor for LTL
formulas. We also provide proofs related to correctness for monitors generated using our
algorithm. In Chapter 8, we present case studies, which depict the evaluation of the pro-
posed method on real-world applications and datasets. Finally, Chapter 9 describes the
details of further extensions of our work along with our concluding remarks.

10

Chapter 2

Background and Related Work

2.1 Overview of Various RV tools and techniques

Since the advent of RV, various tools have been developed to address the problem of
runtime verification for various application domains. In this section, we provide a brief
overview of several tools. Some of these tools such as Tracematches [1] and J-LO [16] use
aspect-oriented programming for extracting the runtime state information from a running
program. These tools can monitor formal properties written in specific formal languages
such as linear temporal logic (LTL) for J-LO and parametric regular patterns for Trace-
matches. jUnitRV [20] is a tool, which supports verification of LTL formulas within JUnit
test framework. jUnitRV uses RV-LTL [13] semantics, which is one of the finite-path se-
mantics for LTL. jUnitRV is primarily designed for monitoring in a test setup. RiITHM [63]
uses LTL as a specification language. Further, it uses time-triggered runtime verification
(TTRV) for reducing the overhead. RiTHM can be used for online monitoring during the
execution of a program as well as for offline monitoring of traces produced by program(s).
Further, RiITHM implements parallel algorithms [15] using GPU for reducing the overhead
of verification. LOLA [241] is a tool, which has developed its own specification language.
This language allows it to encode LTL semantics using recursive expressions. LOLA allows
numerical constraints over various variables in specifications. Further, a LOLA specifi-
cation consists of multiple expressions, whose output can be used as an input to other
expressions.

MARQ [67] uses Quantified Event Automata (QEA) [0], an expressive formalism, to
express parametric temporal properties, and the resultant monitors can be integrated in
Java programs for online monitoring using AspectJ. MonPoly [3] uses a safety fragment

11

Tool Logical Formalism(s) | Back-ends for Supports
Monitor Execution | Interoperability?
J-LO [16] Parametric LTL CPU No
LOLA [24] LOLA Language CPU No
MonPory [3] | MFOTL CPU, Multiprocessor | No
jUnitRV [20] LTL CPU No
MARQ [67] QEA CPU No
MOP [58] Multiple* Multiple* No
BeepBeep [37] | FOLTL CPU No
RiTHM [03] | LTL CPU, GPU No

Table 2.1: Features of RV Tools

of metric first-order temporal logic (MFOTL), which allows aggregation operators such as
SUM, COUNT, MIN, etc. Most of these tools are designed for specific formal languages,
which we also refer to as logical formalisms. MOP (Monitoring Oriented Programming) [58]
is a framework for RV, and it allows different logic plugins to allow monitoring of software
specifications specified in different logical formalisms. JavaMOP, which is an instance
of MOP framework, is used for online monitoring of Java programs using AspectJ. Beep-
Beep [37] is a tool for performing RV of web applications. It uses first-order linear temporal
logic (FOLTL) for describing specifications. Breach [27] is a toolbox for verification of hy-
brid systems, and it supports various logical formalisms such as MITL (Metric Interval
Temporal Logic) and STL (Signal Temporal Logic).

We present the summary of these tools in Table 2.1. As shown, most of the tools
and frameworks are designed for monitoring specifications described using a specific log-
ical formalism. Only MOP framework allows logic plugins along with potential support
for multiple back-ends for efficient execution of monitoring algorithms. Further, none of
the tools support the interoperability feature, which allows to decompose complex speci-
fications into multiple sub-specifications, and these sub-specifications could be monitored
separately using efficient algorithms.

In addition to various tools, several efficient algorithms [0, 9, 10, 14, 56, 76] have been
developed for logical formalisms such as Lt, MFOTL, QEA, FOLTL, regular expressions,
context-free grammars and various fragments of these formalisms. These algorithms differ
in their time and space complexities. Further, these algorithms often address the prob-
lem of verification for a particular fragment of a logical formalism. For example, in [50],
Medhat et al. have developed an efficient parallel algorithm for a fragment of first-order
Lrr. This algorithm requires that the FOLTL formula conforms to certain syntactical

12

Logical Formalism | Algorithm Fragment Only? | Heterogeneous Back-ends?
LTL;3 based State Machine [11]

LrL RV-LTL based State Machine [13]

GPU based Algorithm [15]

Map-reduce based Algorithm [5]

Offline Algorithm based on [3]

Recursion Based Ounline Algorithm [35]
Sequential Algorithm

first-order LTL (based on LTL3 and RV-LTL)

Parallel Algorithm for multi-core and GPU
[56]

Offline Algorithm

(based on MTL Algorithm in [8])

MFOTL Recursive definition based Algorithm

Parallel Algorithm for Multi-core

(Adapted from first-order LTL algorithm [56])
QEA QEA Monitor [67]

X

MTL

X[X] X X[

SEX XX XS]] X

X

ANA VR NI N
AP

X
X

Table 2.2: Algorithms for Widely Used Logical Formalisms

restrictions. Further, in [35], Gunadi et al. have developed an efficient algorithm using
recursive definitions for a fragment of past time metric first-order temporal logic. The
syntactic restrictions on this fragment allow a use of recursive definitions of timed ‘Since’
operator similar to that of past time linear temporal logic (PTLTL) [11]. Barre et al. [7]
have developed a map-reduce based algorithm for efficient verification of LTL.

Table 2.2 shows a summary of various logical formalisms and available algorithms,
which are implemented by aforementioned tools. Column 3 of the table indicates whether
the algorithm only applies to a fragment of the respective logical formalism. Column 4 of
the table indicates whether the algorithm can be run on heterogeneous back-ends such as
multi-core CPU, GPU, etc.

An RV framework uses the state information of a running program for performing
checks. This state information is obtained in multiple ways. There are a variety of static
and dynamic instrumentation tools such as DIME [3], Pin [51], AspectJ, Java Manage-
ment Extensions (JMX [10]) based utilities, LLVM based utilities [51], LTTng [53], etc.
These tools implement different optimizations for efficient instrumentation. Moreover,
these tools facilitate instrumentation in various established formats. Further, there are
different in-house tools used in the software development industry for the purpose of per-
forming instrumentation. Among the aforementioned RV tools, J-LLO, Tracematches, QEA
and JavaMOP use AspectJ for instrumentation. MonPoly has been primarily used for
offline monitoring of recorded log files. jUnitRV uses Javaassist [20] to inject code at load-
time of the Java classes of a running Java program. RiTHM uses LLVM based utility for
instrumentation. A use of JMX is a widely adapted method for monitoring of Java EE

13

applications.

2.2 Competition on Software for Runtime Verifica-
tion (CSRV’14)

CSRV’14 was held as a initiative to compare various tools on the basis of their efficiency
in terms of monitoring overhead and their expressiveness. Further, another motivation
behind this competition was to come up with a set of benchmarks that can be used in
the future to assist the performance evaluation of various RV tools. RiTHM [63], a tool
from our previous work, was a part of this competition (see http://rv2014.imag.fr/
monitoring-competition/results for more details).

CSRV’14 consisted of three phases for each of its tracks. In the first phase, every team
supplied a set of benchmarks using the specifications with logical formalisms and respective
data-sets or programs to be monitored. In the next phase, every team would tune their
tool for the benchmarks of all other teams in the respective track. The tuning phase
involved rewriting the specifications from other teams into a supported logical formalism,
and if required, existing logical formalisms were extended to express different specifications.
Further, this phase involved tuning different monitoring algorithms developed by various
research groups for their logical formalisms. Finally, in the last phase, score was calculated
for each team based on the monitoring overhead for each benchmark and correctness of
the verdicts of the monitors. The overhead was assessed in terms of memory and CPU
consumption of a monitor in addition to its latency in delivering a verdict.

2.3 Discussion

Different approaches for development of aforementioned tools and the respective research
work show that expressiveness of logical formalisms and efficiency of runtime monitoring
are among the most important factors under consideration. While more expressive logical
formalisms allow specifying complex properties, efficient techniques for monitoring reduce
the overhead at runtime. A typical RV setup consists of a front-end, which allows specifying
the properties using logical formalisms, and the back-end consists of the components, such
as instrumentation tools and monitors, which perform a check of whether an execution trace
satisfies the described specification. Typically, the back-end is optimized for performance
as it runs alongside the program under verification. Further, it utilizes overhead control

14

http://rv2014.imag.fr/monitoring-competition/results
http://rv2014.imag.fr/monitoring-competition/results

techniques such as parallel monitoring algorithms, TTRV, etc. On the other hand, the
front-end is designed for processing a set of specifications. Further, Table 2.2 shows the
availability of different monitoring algorithms for various fragments of a logical formalism.
Hence, a segregation of front-end and back-end of an RV setup can enable reuse of a
front-end for different back-ends, and vice versa.

Further, we note the fact that many of the logical formalisms that are used by afore-
mentioned tools are interrelated. Various operators used by different formalisms have
identical semantics. For example, MONPOLY [8] tool uses aggregation operators such as
SUM, COUNT, whose semantics are the extensions of the semantics of quantifiers used
in first-order logic. For a fragment of first-order LTL specifications [76], Medhat et al.
have described an algorithm, where a set of RV-LTL [13] monitors are created to monitor
the first-order LTL formula. These observations show a trend in the evolution of logi-
cal formalisms, where more complex and expressive formalisms get evolved from the less
complex ones. In other words, different temporal logics have evolved by extension or aug-
mentation of the semantics of other logical formalisms. As previously discussed, different
algorithms have been developed for efficiently monitoring the respective fragments of logical
formalisms, and these algorithms can be reused for monitoring of further extensions of the
respective logical formalisms. Additionally, a software system may exhibit specifications,
which require extending the semantics of an existing logical formalism. Here, we consider
an example of a safety specification for soft real-time systems. Informally, the specification
states that for 90 percent of the threads, it is always the case that if a thread is ready, then
it eventually gets scheduled to run within z time units. This property can be captured by
a variant of MFOTL as O (Percentage(t) - O(ready(t) — 00, x] running(t)) > 90). The
semantics of aggregation function ‘percentage’ are similar to the semantics of quantifiers
V,d. Hence, an existing implementation of a MFOTL monitor can be extended to monitor
the specifications with such new aggregation operators.

Furthermore, verification of diverse types of software systems demand writing the spec-
ifications using different variants of the similar logical formalisms. For example, a MTL
specification may consists of different sub-formulas, where one of the sub-formulas con-
forms to a particular syntax for which an efficient parallel-algorithm is available. In this
case, different monitors can be spawned for different sub-formulas, and such monitors can
run in parallel. The verdicts of such monitors could be combined to arrive at the final ver-
dict. Such optimization can prove more efficient than monitoring the entire formula using
a generic monitoring algorithm. Hence, a support for interoperability between monitors is
an important aspect for providing efficient ways of runtime monitoring. Figure 2.2 shows
the availability of multiple efficient algorithms for fragments of various logical formalisms,
and a support for interoperability can allow integrating the features of such algorithms for

15

efficient monitoring of different formulas.

To facilitate an application of RV tools in industry, it is important that higher level
abstractions of specification languages become available. In general, programmers are
reluctant to write formal specifications because of the complexity involved in understanding
the formalisms [2]. Thus, as argued by Ammmons et al., verification techniques are unlikely
to be widely adopted unless cheaper and easier ways of formulating specifications are
developed. High-level abstractions of current logical formalisms can make it easy for the
practitioners to create and monitor specifications with minimal assistance from experts.

Further, our experience of CSRV’14 confirmed our analysis that logical formalisms,
which are at lower level of abstraction, can express specifications written in other higher
level logical formalisms. MARQ [67], which uses QEA as the logical formalism, was able
to express specifications in most other logical formalisms. While such encoding is useful,
high-level abstractions are easy to understand for users. Thus, it is important to segregate
the specification processing phase from the monitor construction phase of an RV setup.
The specification processing phase would need to support translation of a specification,
written using a high-level specification language, into an equivalent specification in a low-
level language for which efficient monitor construction algorithms already exist.

The back-end component of an RV setup requires efficient monitoring algorithms for
controlling the overhead. Instrumentation and monitor execution are the activities, which
mainly contribute for this exta-overhead. There have been different schemes developed
to counter this overhead [4, 17, 32, 38, 44]. As discussed previously, there are different
parallel monitoring algorithms, which utilize GPU, multi-core CPU, FPGAs, etc. Such
techniques require an RV setup to support multiple back-ends, which enable efficient run-
time monitoring. It implies that there needs to be a segregation of the monitor component
from other components of a typical RV setup. As shown in Figure 2.2, some monitoring
algorithms use multi-core CPU and GPU for performing efficient runtime monitoring.

With reference to aforementioned considerations, we note that available state-of-the-art
tools and frameworks for runtime verification do not offer direct support for extending logi-
cal formalisms and reusing various efficient monitoring algorithms. Further, many software
projects often develop proprietary test beds, and an RV framework, with a comprehen-
sive set of APIs, can help automation developers to integrate state-of-the-art monitoring
algorithms into their software applications and test beds. Further, efficient monitoring
algorithms with different back-ends and overhead-control schemes can help to reduce the
exta-overhead caused by RV. Incorporating the interoperability feature between a set of
monitors adds another dimension to reducing the overhead of RV, where efficient algorithms
for different fragments of a logical formalism can be utilized.

16

2.4 Preliminaries on Runtime Verification of LTL

In this section, we provide an overview of LTL along with the details of its finite path
semantics.

2.4.1 Overview of LTL

A program P is considered to be a generator of computation, i.e., an infinite sequence of
events or states. We use the symbol X to denote the set of states, which is also referred
to as an alphabet. Thus, an infinite sequence of elements from an alphabet X is called an
infinite word. Similarly, a finite sequence of elements from an alphabet is referred to as
a finite word. Further, we use X* and X to designate the set of all finite words and the
set of all nonempty finite words, respectively. Also, we use ¥“ to refer to the set of all
infinite words. A program P produces an execution trace o, and a monitor M provides a
verdict stating whether o satisfies a specification . The concatenation of a finite trace o
and another trace p is denoted by o.p. Finally, the i’* element of a word ¢ = a4, as, ... is
referred to as a;.

Definition 1 (Syntax of LTL). Let AP be a finite and non-empty set of atomic proposi-
tions, and ¥ = 24F q finite alphabet. The set of LTL specifications is inductively defined
as follows:

pu=true|pl e o1 Vo | O¢leiUps
Where, p € AP, and () (next), and U (until) are the temporal operators. The boolean

operators retain their usual meaning.

Definition 2 (Semantics of LTL). Let 0 = ay,as,... be an infinite trace in 3¥. LTL
semantics are inductively defined over the infinite trace as per below:

oiET
O',Z'}:p iff pEa;
0,1 = it o,ifE e

o iE @ Vs it oibE@ VooikE e
0,1 = QO iff oi+lEe
O',Z):()DlUQDQ iff ElkZZO',k)ZQOQ/\
Vici<j<k:o0,jF¢
Where |= denotes the satisfaction relation.

17

Further, o = ¢ is true iff 0,1 = ¢. We introduce syntactic sugar in the form of two
operators [J (always) and ¢ (eventually). Thus, ¢ ¢ is defined as true U ¢, and Oy is
defined as = —p. An LTL formula ¢ defines a set of traces, which we refer to as L(yp).
A trace o satisfies an LTL formula ¢ if 0 € L(p). Chang et al. [18] have classified LTL
formulas into the following six classes: safety, guarantee, obligation, response, persistence,
and reactivity.

2.4.2 Finite Path Semantics for LTL

LrTL semantics are defined over infinite words. However, in practice, a program can only
generate a finite word. Since the problem of runtime verification considers only finite
words, multiple finite path semantics have been developed for LTL. Such semantics include
Lrrg [14], FrrL [55], RV-LTL [13], and asymptotically correct finite path semantics [01].
In this subsection, we provide a brief description of some of these semantics.

LTL3; The semantics of LTLg was introduced by Bauer et al. [14]. LTL3 uses three truth
values to denote the evaluation of an LTL formula over finite paths. These three truth-
values are from the truth-domain, B; = {T, 7, L}. Let =, denote the satisfaction relation
over infinite paths.

Definition 3 (LTL; semantics). Let 0 = aj,as,... € X* denote a finite trace. The
evaluation of the truth-value of an LitLg formula ¢ for the trace o is defined as follows:

T ifVo e X : cwlk, ¢
[0 s o] =¢ L ifVv eI : ouls, ¢
7 otherwise

Bauer et al. [11] also proposed a monitor synthesis method to generate monitors for
LrL formulas. A monitor has an output function \ : @, — Bgs, i.e., each state of the FSM
is mapped to one of the truth-values in the truth-domain {T, L, ?}. An LTL3 monitor
delivers a verdict as T on a finite word provided all the infinite extensions of the finite
word satisfy the LTL formula. In this case, the finite word is called a good prefix of the
LrL formula. On the other hand, an LTL3 monitor delivers a verdict as 1, when all the
infinite extensions of the finite word violate the LTL formula. Otherwise, an LTL3 monitor
delivers a verdict as 7, i.e., the truth-value of the specification is unknown. Furthermore, a
finite prefix o is called an ugly prefix, when there exists no other finite prefix u such that
o.u is either a good or a bad prefix.

An LtL formula is monitorable [1/] provided there exists no ugly prefix for the formula.

18

FLTL [55] The semantics of LTL are defined over infinite traces. Finite LTL (FLTL)
was proposed to reason about finite traces for verifying formulas at run time as a monitor
can only observe a finite-word at run time. FLTL semantics are based on the truth values
B, = {T, L}. FLTL definition contains a weak ‘next’ operator denoted by .

Definition 4 (FLTL semantics). Let ¢ and ¢ be two LTL formulas, and o = agay + -+ tp_q
be a finite trace. Also, let € denotes an empty trace.

a1 Er] ifa #e
1 otherwise

[U):FQQO]:{

a1 Fr] ifa #e
T otherwise

[0 =r O] :{

T ifFke0n—1]:laFrv]=T A
[0 Fr U] = VIE[0,k): [aEre]=T

1 otherwise

Although not all LTL formulas are monitorable with LTLs [14], such formulas belong to
the commonly used patterns [14, 29] of LTL formulas. For example, a formula 00 (a — Ob)
is not monitorable with LTL3 because it cannot be satisfied or violated by a finite word, and
the corresponding LLTL3 monitor consists of a single state with its verdict as ‘unknown’. To
address this problem, Bauer et al. [13] combined FLTL semantics with LTL3 semantics to
derive RV-LTL semantics. Here, a weak ‘next’ operator evaluates to T, when a next state
does not exist at the end of a finite word. Further, the strong ‘next’ operator evaluates to
1, when a next state does not exist at the end of a finite word. In order to combine FLTL
with LrLg, ¢ is evaluated using a strong ‘next’ operator, and [J is evaluated using a weak
‘next’ operator. This captures the idea that ¢ ¢ needs to be evaluated negatively, when ¢
has not been satisfied in any of the observed states. Further, [J¢ needs to be evaluated
positively, when ¢ is not violated in any of the observed states.

Definition 5 (RV-LTL semantics). Let 0 = aj,as,... € X* denote a finite trace. The
evaluation of truth-value of a RV-LTL formula ¢ for the trace o is denoted as [0 = ¢|gv

19

which is an element of By and is defined as follows:

T ifVYoet:ovkE,
T ifVYoeXv:ovl, ¢

o » = .
o = Play Tp ifjcoEps=7and[oc E ¢lp=T
1p ifjo = pls=7and [0 F ¢lrp=1
Further, Falcone et al. [31] described an alternative definition of monitorability. Based

upon their definition, an LTL formula is monitorable iff the constructed monitor can dis-
tinguish between good and bad finite prefixes, i.e.,

V 0go0d € L*(¢) + YV Obad € L (=) * [0good F I8 # [0baa F #lB

Here, B denotes the truth-domain of the finite path semantics, used for the evaluation of
the formula. L*(¢) denotes the set of good finite prefixes for an LTL formula ¢. Bauer
et al [13] provide a method for constructing a monitor, as a deterministic FSM, for an
RV-LTL formula. As shown in [13], RV-LTL satisfies the maxim of ‘Complementation by
negation’. Thus, RV-LTL monitors can be used to monitor the LTL formulas, which can
never be satisfied or violated by finite traces because RV-LTL monitors conform to the
requirements of the alternative definition of monitorability by producing a different verdict
for good and bad finite prefixes of words.

Definition 6 (RV-LTL Monitor). Let ¢ be a RV-LTL formula over an alphabet ¥. The
monitor M¥ of ¢ is the FSM (X,Q, qo, 0, \), where Q is a set of states, qo is the initial
state, 6 C @ x X x Q is the transition relation, and X is a function that maps each state
in Q to a value in {T,7T,, L, L}, such that,

o = SO]RV = A\0(qo,0))

20

Chapter 3

RitHM Framework

With a motivation to further improve the current state of RV techniques w.r.t. our analysis
of the state-of-the-art tools and techniques, we propose RitHM (Runtime Heterogeneous
Monitoring), a comprehensive framework, whose architecture incorporates design features
to achieve following goals. These goals focus on generating efficient monitors in addition
to supporting expressive logical formalisms and their extensions.

3.1 Goals of RitHM’s design

Facilitate development of extensions of logical formalisms and their high level ab-
stractions.

Ability to run monitors on multiple back-ends with different overhead-control schemes
in order to support efficient monitoring techniques.

Support interoperability of monitors so that efficient algorithms for fragments of
logical formalisms could be reused.

Provision of APIs in order to facilitate easy integration with instrumentation tools,
existing applications and testing frameworks.

Provide a platform for comparative evaluation of different monitoring algorithms.

Besides being used for runtime verification, we believe that RitHM would serve as an
open-source repository of interoperable implementations of cutting-edge monitoring algo-
rithms developed for different logical formalisms. It would assist to drive further research

21

A 4

Command- . Specification- Monitor- T
Dispatcher — - . : . . [Verdict-listener
handler rewriter synthesizer |

A

Invocation- Predicate- L, .
Observer Monitor
controller evaluator
\:’ Component — . — - —> Preprocessing
@ Plugin Program _ , Runtime Processing

Figure 3.1: RitHM Architecture and Basic Control flow

and development of runtime verification techniques. The contributions of this part of thesis
are:

The design and architecture of RitHM, a comprehensive framework for runtime ver-
ification

Various novel features of RitHM’s design and the reasoning for the associated design
decisions

Evaluations of architectures using architecture trade-off analysis method (ATAM)

e An empirical evaluation of RitHM by monitoring of real-world datasets

3.2 RitHM Framework

In this section, we describe the details about architecture and design of RitHM. Moreover,
we describe important design features such as the interoperability between RitHM’s mon-
itors. Additionally, RitHM can operate in outline [52] mode, where an execution trace
is sent over a network, and RitHM listens for the events using TCP sockets. This mode
permits a remote instance of RitHM to be configured by a client, where the client sends
monitoring commands to the RitHM instance running as a server. We also describe the
details of RitHM’s built-in plugins.

3.2.1 RitHM Architecture

Figure 3.1 depicts the important components of RitHM along with details of typical control
flow among them. We further describe the details of various components.

22

Command-handler: This component receives input parameters, and it validates the
input parameters for various constraints. Some of the input parameters are described
in the example presented later in this chapter. The Command-handler then passes the
relevant details to other components such as the Plugin-loader and the Dispatcher for
further processing.

Plugin-loader and Dispatcher: Plugin-loader attempts to load various types of
RitHM plugins based on the supplied input. Various types of plugins and their func-
tions are described in later parts of this section. Dispatcher instantiates the loaded plugins
with respective input parameters. It then passes the control to Invocation-controller, which
co-ordinates the invocation of the specified monitor.

Invocation-controller: This component’s responsibility includes invoking the synthe-
sized monitors in conjunction with other required plugins. While events are extracted from
a program by Observer, Invocation-controller invokes Monitor w.r.t. certain conditions and
passes a reference of Observer’s buffer to Monitor. The invocation itself can be performed
using various schemes of overhead-control such as event-triggered RV or buffer-triggered
RV.

This component is an extensible component to allow a user to reuse and extend various
overhead-control schemes. The default implementation of this components can perform
buffer-triggered monitoring (BTM) [57] and event-triggered monitoring, where Monitor is
invoked for each event extracted in the buffer.

In case of online monitoring, the programs being monitored utilizes Invocation-controller
directly using RitHM’s APIs to control the invocation of Monitor.

Observer: This component handles the functionality of transforming the extracted
events into RitHM’s internal format. In case of offline monitoring, the user specifies a path
to a file containing the events. For online monitoring, an instrumentation tool extracts
the events from a running program and the events can be passed to RitHM by using the
APIs of respective Observer plugin. The built-in implementations of this plugin transform
data from XML and CSV formats. This component is designed to be a RitHM plugin so
that a user can write implementations of this plugin in order to monitor events in various
external formats.

23

Specification-rewriter: This component parses the supplied specification and vali-
dates their syntax. Next, it constructs a parse-tree for each of the specifications, and the
parse-trees are utilized by Monitor-synthesizer for constructing Monitor. Further, this plu-
gin also handles the responsibility of translating the supplied specifications in case needed.

Here, we note one of the important design features of RitHM, where the Specification-
rewriter is decoupled from Monitor-synthesizer. This decoupling helps RitHM to utilize
an implementation of Monitor-synthesizer with different implementations of Specification-
rewriter, and vice versa. This allows a logician to develop a high-level specification lan-
guage, which can then be internally compiled into a low-level specification language for
which a monitoring algorithm exists. For example, RitHM contains a built-in implementa-
tion of Specification-rewriter for verbose Linear Temporal Logic (VLTL), which has a set
of verbose tokens in its syntax. These tokens of VLTL can be directly mapped to that of
LrL. The rewriter service internally translates VLTL formulas into LTL formulas before
they are passed on to the Monitor-synthesizer plugin for LTL.

Monitor-synthesizer: This component constructs a Monitor using a set of monitoring
procedures for the supplied specifications, which are validated by Specification-rewriter.
At run time, Monitor receives events from Observer. Invocation-controller controls the
interaction between Observer and Monitor. A user can develop different implementations
of this component to monitor specifications in different types of logical formalisms. Monitor
utilizes other components such as Verdict-listener and Predicate-evaluator.

Verdict-listener: This component, which is also a RitHM plugin, gets notified by
Monitor, when there is a change in the truth-values of specifications. A user can create
custom implementations for different purposes. For example, when Monitor detects a
violation of the correctness criteria, an implementation of this plugin can steer the program
back into a correct state.

Predicate-evaluator: This component consumes events and finds the truth-values
of the predicates in first-order logic (resp. propositions in propositional logics). Since,
the evaluation of predicates (resp. propositions) differs for different use-cases, a user can
provide a custom implementation in various ways. The built-in implementations of this
predicate allow a user to perform an evaluation using JavaScript and Lua scripts. Such
scripts consume an event, i.e., a program-state in RitHM’s standard format, and an eval-
uation of scripts assigns values to different predicates used in the respective specifications.

24

Invocation-controller

Monitor Set 1

Y
Monitor Set 2

Monitor Set m
|
v

Final Verdict

Figure 3.2: RitHM Interoperability of Monitors

The scripts need to be designed such that the valuation of predicates is returned in RitHM’s
standard format.

As described earlier, many components of RitHM are supported as plugins. Conse-
quently, RitHM could be customized for different use-cases.

3.2.2 Interoperability of Monitors in RitHM

RitHM is designed such that different monitors can be used in conjunction with each other.
This enables a reuse of efficient algorithms for monitoring various fragments of a logical
formalism. Further, this functionality allows decomposition of a complex specification into
various simple specifications, which can be monitored by different monitoring algorithms.
Consequently, this feature facilitates a development of monitors for the extensions of ex-
isting logical formalisms.

This design feature of RitHM works alongside the rewriter interface and monitoring
algorithms. This feature enables a user to develop high-level specification languages, and
the interoperability feature enables him to combine existing implementations of Monitor
interface.

25

As shown in Figure 3.2, Invocation-controller starts first set of monitors, and a set
of specifications are processed. The verdicts of the monitors are saved. The next set of
monitors utilizes these saved verdicts as inputs. This ‘piping’ process continues until the
last set of monitors produces final verdicts.

This feature of RitHM is similar to that of LOLA [241]. LOLA saves the verdicts of the
sub-formulas into variables. These saved verdicts are utilized for determining the verdict
of a top-level formula. However, it is not specified whether LOLA can save the verdicts of
monitors for specifications, which are expressed in a specification language different from
LOLA’s own language. On the contrary, RitHM allows interoperability between monitors
of different logical formalisms, and this enables a user to develop extensions of different
types of logical formalisms. For example, one could ‘wrap’ an existing implementation
of a monitor for MFOTL with additional aggregation operators by developing a Monitor-
synthesizer plugin to handle the additional aggregation operators.

When the interoperability feature is used, RitHM internally constructs a set of tree
structures. In each of these tree structures, the leaves denote the monitors executed in the
first stage. The monitors in the higher levels of the tree utilize the verdicts produced by the
monitors in the previous levels. Hence, if a monitor M;,; in level 7 + 1 utilizes the verdicts
produced by a monitor M; in level ¢ then it is required that M; is forward interoperable
with M;,1). This is denoted by (M; — M;1).

Definition 1 (Interoperable Monitors). Let By be the output truth-domain, i.e., the set
of possible truth-values produced by My, a Monitor Plugin. Further, By denotes the input
truth-domain, i.e., the set of possible truth-values processed as an input by My, which is
another Monitor Plugin.

My s forward interoperable with Mo, iff. By C Bs, i.e., the set of possible truth-values
produced by My, is valid as an input for M.

3.2.3 RitHM for RV in Outline Mode

RitHM can be run as a server as shown in Figure 4.1. Different clients can utilize the
RitHM client library to connect to a RitHM server. This library implements a simple
communication protocol. The clients can be programs, which run on remote machines, or
they could be other utilities, which connect to a RitHM server for offline monitoring.

Clients can connect to a RitHM instance in a secure manner using SSL (Secure Sockets
Layer) or by using plain sockets for un-secure connections. The clients can configure the
RitHM instance using a set of configuration commands. The client then sends the execution
trace to the RitHM instance, which buffers the trace and monitors process it.

26

TCP

Connection
. . Configuration Commands + Trace—»|
RitHM Client .
. RitHM Server
Library
l«—Verdict of Monitor

Running Other

Program Utilities

Figure 3.3: RitHM Server

3.3 RitHM Plugins

In this section, we describe built-in plugins for various components of RitHM. These plugins
implement various algorithms developed in the area of runtime verification for different
logical formalisms.

3.3.1 Observer Plugins

RitHM provides two built-in plugins for data-extraction and the transformation of event
data into RitHM’s standard format. These plugins extract data from XML and CSV
formats respectively. Once extracted, the event data is transformed into RitHM’s standard
format.

The XML syntax expected by the built-in plugin for XML is as shown in Listing 3.1.
Each State tag in the XML data corresponds to a distinct event. A Key tag is used to
define the names of various parameters for an event. A Value tag provides the value of
a event parameter defined by the previous Key tag. The plugin also expects a timestamp
tag, which encloses the value of the timestamp for the corresponding event. The value is
used for monitoring of specifications described using timed-temporal logics such as MTL.

The CSV syntax expected by the CSV plugin is as shown in Listing 3.2. Every line
of a valid CSV file contains a set of key-value pairs, which are separated by comma. The
plugin also expects that timestamp as one of the keys in every line. A new line indicates
a start of details for the next event.

<Trace>

27

<State>
<Key>keyname_1</Key>
<Value>keyvalue_1</Value>
<Key>keyname_2</Key>
<Value>keyvalue_2</Value>

<Key>keyname_n</Key>
<Value>keyvalue_n</Value>
<timestamp>01</timestamp>

</State>

<State>

</State>

</Trace>

Listing 3.1: Expected XML Syntax

keyname_11=value_11,...,keyname_1lm=value_1im
keyname_21=value_21,...,keyname_2m=value_2m
keyname_nl=value_nl,...,keyname_nm=value_nm

Listing 3.2: Expected CSV Syntax

3.3.2 Specification-rewriter Plugins

RitHM provides built-in plugins for parsing and rewriting specifications in the following
logical formalisms: LtL [14], PTLTL [10], MTL [76], A fragment of FOLTL [56], VLTL,
etc. We further illustrate the syntax of logical formalisms for a few selected plugins.

LrL [14]: The Specification-rewriter plugin for LTL uses below syntax for validating LTL
specifications. Below is an example of an LTL specification.

e ThreadCreated— ><>ThreadReady: This specification expresses an idea that when
a thread is created by a process, it is eventually in ‘Ready’ state.

LTL =
n TRUE n
| Event

28

PTLTL [40]:

" LTL

“[1" LTL
"<>" LTL

"X" LTL

LTL "&&" LTL
LTL "||" LTL
LTL "->" LTL
LTL "U" LTL
"FALSE"

//
//
//
//
//
//
//
//

dating PTLTL specifications.
PTLTL :=

"TRUE"

Event

"1 PTLTL

"[x]" PTLTL
"<x>" PTLTL

"X*x" PTLTL

PTLTL "&&" PTLTL
PTLTL "||" PTLTL
PTLTL "->" PTLTL
PTLTL "S" PTLTL
"FALSE"

//
//
//
//
//
//
//
//

Not
Globally
Eventually
Next

And

Or

Implies
Until

Listing 3.3: LTL Syntax

The Specification-rewriter plugin for PTLTL uses below syntax for vali-

Not

Globally in past
Eventually in past
Previously

And

Or

Implies

Since

Listing 3.4: PTLTL Syntax

Below is an example of an PTLTL specification.

e [«](AlaramRaised— >< % >Fault): This specification expresses an idea that it is
always the case that when an alarm is raised, a fault had occurred in the past.

MTL: The parser for MTL uses below syntax for validating MTL specifications.

MTL

"TRUE"

Event

" MTL
"[I{x,y}" MTL

//
//
//

Not
Bounded Globally
with time interval

29

// [x,y]

| "<>{x,y}" MTL // Bounded Eventually
// with time interval
// [x,y]

| MTL "&&" MTL // And

| MTL "||"™ MTL // Or

[MTL "->" MTL // Implies

|

MTL "U{x,y}" MTL // Bounded Until with
// time interval
// [x,y]

| "FALSE"

Listing 3.5: MTL Syntax
Below is an example of an MTL specification.

e [|(CANMsgSent— ><> {0,2}CANMsgDelivered): This specification expresses the
idea that it is always the case that when a message is sent via a CAN (Controller
Area Network) bus, it is eventually delivered within 2 Milliseconds.

3.3.3 Monitor-synthesizer Plugins

A set of built-in implementations of the Monitor Plugin are available for the following
logical formalisms: LT, PTLTL, MTL, a fragment of FOLTL and Regular Expressions.
The plugin for monitoring LTL utilizes the algorithms developed by Bauer at al. [13, 14].
Bauer et al. have developed implementation of these algorithms in the form of 1t13tools
utility. The plugin for Monitoring specifications expressed using regular expressions uses

an automaton library, which is developed by Mgller et al [59]. The plugin for monitoring
MTL use variants of the algorithms described in [10, 35]. The Monitor plugin for FOLTL
implements a variant of monitoring algorithm [56] developed by Medhat et al.

3.3.4 Other Plugins

The default Predicate-evaluator plugin assumes that an event trace provided by the Ob-
server plugin contains the evaluation of the associated predicates or propositions. Further,
a set of implementations for evaluating predicates (resp. propositions) using scripts written
in ‘Lua’ and ‘JavaScript’ are also available. The default Verdict-listener plugin outputs
the changes in verdicts of monitors at the standard output. The default implementation
of Invocation-controller component allows configuring a Monitor plugin for buffer-triggered
and event-triggered runtime verification.

30

Proposition | Evaluation Condition

p currentRPM > 4,000 A prevRPM < 4,000
currentRPM < 4,000 A prevRPM > 4,000
A<=12AA>=0.8

A>1.2

w|= |0

Table 3.1: Propositions Used in the Example

3.3.5 RitHM Usage

RitHM is designed for users, who develop a set of specifications for verification. Further,
we assume that RitHM’s users have basic programming knowledge. RitHM’s configura-
tion can be described using command-line interface or through configuration files. Using
RitHM through configuration files allows a user to reuse several features of RitHM and
only configure the required parts of a RitHM instance.

We illustrate RitHM’s usage using an example. In this example, we monitor a trace
of an Engine Control Unit (ECU) used in [57]. The trace, which is a CSV file, contains
various parameters. The properties are defined using the parameters namely ‘lambda’,
‘currentRPM’ and ‘prevRPM’. The value of the ‘lambda’ parameter indicates the output
of the lambda sensor of the ECU. This value is equal to the air-to-fuel ratio of the engine.
The parameters ‘currentRPM’ and ‘prevRPM’ indicate the value of engine’s revolutions
per minute in current reading and previous reading respectively.

The configuration file used in the example is shown in Listing 3.6. We intend to verify
two LTL specifications on the execution trace. Additionally, we use LTL3 semantics. The
evaluation of propositions is done using ‘Lua’ script, which is shown in Listing 3.7. This
script, which uses the value of the parameters in the execution trace as an input, evaluates
the propositions used in the two LTL formulas. The script sets the value of a proposition
to ‘1’, when the associated condition is true. As shown, the script evaluates the values of
four propositions w.r.t. the conditions, which are shown in Table 3.1.

The two LTL properties are chosen from Dwyer’s patterns of LTL formulas, and these
safety properties specify the conditions on the value of the ‘lambda’ parameter w.r.t. the
variation in the value of engine’s revolutions per minute. An instance of RitHM is started
using RitHMBrewer utility as shown in Listing 3.8. As the configuration file does not specify
a plugin of type ‘Verdict-listener’, RitHM uses default plugin, which outputs the changes
in the verdict of a specification at the console. The two safety formulas are not violated
by the trace. Thus, the verdicts are shown as ‘unknown’ as per LTLj3 semantics.

31

dataFile=rithm_csv_engine_data.csv

specParserClass=LTL

specifications="[]((q&&! r&&<>r)->(p U r))
[1((q&&! T&&<>r)->(! s U r))"

monitorClass=LTL3

traceParserClass=CSV

predicateEvaluatorType=1ua

predicateEvaluatorScriptFile=exampleEvaluator.lua

Listing 3.6: Example of a RitHM Configuration File

local function main ()
retval={}
if tonumber (currentRPM) > 4000 and
tonumber (prevRPM) <= 4000 then
retval["q"] = tostring (1)
end
if tonumber (currentRPM) <= 4000 and
tonumber (prevRPM) > 4000 then
retval["r"] = tostring(1l)
end
if tonumber (lambda) <= 1.2 and
tonumber (lambda) >= 0.8 then
retval ["p"] = tostring (1)

end
if tonumber (lambda) > 1.2 then
retval["s"] = tostring (1)
end
return retval
end

return main ()

Listing 3.7: Evaluating Propositions using Lua Scripting

userl@compl:~$ RitHMBrewer -configFile rithm.properties
[1CCq\&\&! r\&\&<>r)->(p U r)):=Unknown

[1CCq\&\&! r\&\&<>r)->(! s U r)):=Unknown
userl@compl:~$

Listing 3.8: Using RitHMDBrewer

32

Chapter 4

Considerations for RitHM’s Design

In this chapter, we enumerate different considerations, which have driven our design deci-
sions and the associated features. These decisions typically focus on achieving efficiency in
RV techniques in terms of resource utilization and latency. Further, the design decisions
also address the problem of development of expressive logical formalisms and their high-
level abstractions. Additionally, we provide an evaluation of RitHM’s architecture using
architecture trade-off analysis method (ATAM) [18]. We also evaluate RITHM', MOP and
LARVA using ATAM. The evaluations highlight the importance of unique design features
of RitHM.

4.1 The Front-end and Back-end of RitHM

We illustrate one of the most important design features of RitHM. Figure 4.1 shows high
level view of RitHM’s architecture, where the front-end components are separated from
back-end. As described earlier in Section 1, the front-end handles the tasks of process-
ing specifications and configurations of a monitor. Typically, the preprocessing happens
at the front-end, but the back-end runs alongside a program, which is under verification.
So, the back-end needs to run optimized algorithms for reducing the overhead caused by
RV. This involves controlling the invocation of a monitor by different schemes such as
BTRV, TTRV [17], control-theoretic schemes [57], etc. Further, different efficient mon-
itoring algorithms, which use parallel [5, 15, 35, 50] verification techniques, can be run
at the back-end. On the other hand, expressivity is one of the important aspects for the

IRitHM’s predecessor

33

RitHM Front-end | Processed Specifications—» RitHM Back-end

Multiple Plugins for Overhead-control Platforms for Executing
Specifications: Schemes: Monitoring Algorithms:
[LTL, [Buffer-triggered RV, [CPU,

PTLTL, Control-theoretic Multi-core CPU,

MTL, Schemes*] GPU¥*,

Regular Expressions, Data-extraction: FPGAs*]

First-order LTL] [XML and CSV Files,

Running Program]

* Plan to support in future

Figure 4.1: Summary of functions

front-end, which processes specifications. The front-end executes offline algorithms, which
validate, translate or transform a set of specifications. Considering these factors, we devel-
oped RitHM’s architecture, where the components such as Invocation-controller, Observer,
Monitor, Predicate-evaluator and Verdict Listener constitute the back-end. Further, the
components such as Command-handler, Dispatcher and Specification-rewriter constitute
the front-end of RitHM.

As most of the components of the front-end and back-end are supported as plugins, a
user can utilize different combinations of the front-end plugins and back-end plugins. Fur-
ther, as introduced previously, to be adapted widely, the RV techniques need to improve in
their front-end aspects, where user-friendly ways of defining specifications are needed [2].
A segregation of the front-end components from the back-end components facilitates in-
tegration of complex offline algorithms, which perform specification mining, translation
and transformation of specifications. These algorithms are separated from online moni-
toring algorithms, which are required to be efficient in terms of performance and resource
utilization.

34

4.2 Support for Multiple Logical Formalisms

Figure 3.1 shows that the Specification-rewriter component of RitHM is supported as one
of the plugins. This feature is important because of the following reasons.

Firstly, there are various types of logical formalisms, and they support different use-
cases and scenarios. For example, LTL serves to specify properties where an explicit notion
of time is not needed, and the knowledge about the ordering of events in a system is
enough for verification. On the other hand, MTL can be used to specify specifications of
time-sensitive systems, where a time interval between different events of a system needs
to be explicitly bounded. Hence, such logics are relevant for describing specifications of
real-time systems. Further, logical formalisms such first-order LT, and MFOTL, which
support parametric monitoring, are useful for verification of systems with multiple objects.
Thus, a typical RV setup needs to support mutliple logical formalisms.

Secondly, the evolution of logical formalisms shows a trend, where more complex and
expressive logical formalisms are created by extending previously developed formalisms.
Some examples of such extensions are: addition of aggregation operators to MFOTL for
MonNPoLy, development of ‘Counting’ quantifier for first-order LTL by Bauer et al. [11],
‘Counting’ semantics for first-order LtL by Medhat et al. [50], etc.

Thirdly, RitHM’s rewriter interface supports various APIs, which allow translating or
transforming specifications. This allows developing higher level abstractions of existing
logical formalisms. Dwyer et al. [29] have identified commonly used patterns of LTL speci-
fications. In this work, they developed mappings of high-level descriptions of the patterns
to the corresponding LTL formulas. For example, ‘P is false before R becomes true’ is
mapped to QR — —PU R. Here, P and R are atomic propositions. Such patterns increase
the usability of the logical formalisms. RitHM provides APIs to support such translation
of specifications.

Finally, there are different specifications, which could be written using multiple logical
formalisms. Lt and PTLTL are found to be equally expressive [33], but PTLTL is proven
to be more succinct than LTL in terms of the size of a temporal formula. There are different
monitoring algorithms available for LTL and PTLTL. However, the monitoring algorithm
for LrL [14], which uses a finite state Moore machine, is more efficient than that of the
rewriting based algorithm [11] because later requires extra memory buffers to preserve the
evaluations of all subformulas while arriving at a verdict of the corresponding top-level
PTLTL formula. Hence, the time complexity of the monitoring algorithms is O(m x n),
where m is the size [10] of the PTLTL formula and n is the number of events.

We performed an experiment with a set of safety formulas of different sizes. For the

35

No. | PTLTL Formula LTL Formula

1@ (CLQ — (_|CL1 VAN ®a1) D(OGQ — (_| O a; N\ al))
2| = (CLQ — (a1 /ASmEO) al)) D(Qag — (Oa1 A _|CL1))
3 B5 (a1) [5](@1)
4 '/:\1(8 (@41 — ./:\1(D(Qai+1 —

(@i A2 O a;)) (Oai A ~a;)))

Table 4.1: PTLTL and LTL formulas

experiments, we used a single eight core machine equipped with the Intel i7-3820 CPU at
3.60GHz and 31.4Gb of RAM. The machine runs Ubuntu 14.04 LTS 64 bit. Further, each
of the safety formula was described using two logical formalisms namely PTLTL and LTL.
The formulas are shown in Table 4.1. The PTLTL operators ‘previously’ and ‘globally
in the past’ are denoted by © and [respectively. We also note that over a finite trace,
an appropriate initialization of truth-values of propositions is required while evaluating
sub-formulas with ‘previously’ operator of PTLTL [10].

We compared the overhead of PTLTL and LTL monitors in terms of their execution
time. Figure 4.2 shows the comparison of overhead of PTLTL and LTL w.r.t. the variation
in the number of events. The x-axis shows the number of events in traces, and the y-
axis shows the execution time of monitors in milliseconds. As the size of the formula
increases, the LTL monitor outperforms the PTLTL monitors by an increasing margin.
For Property 3, the difference between the execution times is not significant. However, it
is significant for Property 4, where the size of the formula is bigger than that of Property
3. The findings of this experiment suggest that a support for multiple logical formalisms in
front-end provides flexibility to a user to choose appropriate configurations for respective
use-cases. Additionally, a user can evaluate multiple monitoring algorithms by encoding a
specification into multiple logical formalisms.

4.3 Support for Monitor Plugins and Multiple Back-
ends

The Monitor-synthesizer component of RitHM is supported as a plugin. RitHM’s Monitor-
synthesizer plugins generate monitors, which implement monitoring algorithms for a logical
formalism or its particular fragment. Hence, there can be mutliple monitors available

36

6000 6000 6000

2 Bl g =
3 5000 5000 g 5000
2 i 2 -+
€ €
€ 4000 4000 < 4000
§ I § =
S 3000 3000 S 3000
= =
k) = ° =
g 2000 2000 g 2000
= e
c c
S S
5 1000 4 1000 5 1000 9
(5] (5]
153 Q
> >
0 0 0
4 6 8 10 4 6 8 10
No. of Events in Execution Trace (in thousands) No. of Events in Execution Trace (in thousands)
Execution Time of PTLTL Monitor =—=1 Execution Time of PTLTL Monitor =——=
Execution Time of LTL Monitor s Execution Time of LTL Monitor s
(a) Property 1 (b) Property 2
_ 6000 6000 _ 25000 —
w (%]
° e
5 5
§ 5000 5000 § 20000 e
E 4000 4000 E
_é .é 15000 =
S 3000 3000 5
E E =
S S 10000
g 2000 = 4 2000 2
= e
§ § 5000
5 1000 1 4 1000 5
o O
[} Q
x >
g I @ m B .
0 0 0
4 6 8 10 4 6 8 10
No. of Events in Execution Trace (in thousands) No. of Events in Execution Trace (in thousands)
Execution Time of PTLTL Monitor ===—= Execution Time of PTLTL Monitor ==—=
Execution Time of LTL Monitor s Execution Time of LTL Monitor s
(c) Property 3 (d) Property 4

Figure 4.2: Comparison of Monitoring Overhead for PTLTL and LTL Formulas

for a logical formalism, and a user can choose the optimal monitor as required by the
respective use-case. Further, such monitors can be run on a back-end such as multi-
core CPU depending upon whether a parallel algorithm exists for performing efficient
verification.

A use of mutli-core CPU, GPU and FPGAs has been recently shown to be useful to
runtime monitoring [15, 56, 64]. Such use causes less-intrusive verification of a system as
the associated monitor introduces less jitter in the system’s performance because of lesser

37

6000

5000

4000

3000

2000

1000

25000

20000

15000

10000

5000

proportion of shared resources compared to that of a monitor, which runs alongside the
system on same processor. Further, such monitor also provides isolation, which ensures
that the monitor is less affected by failures of underlying hardware on which the system
runs. A use of mutli-core CPU can reduce latency in monitoring as a result of parallel-
processing. Moreover, it facilitates efficiency in terms of power consumption [34].

For parametric monitoring, it is often the case that a large number of monitors are
created for individual objects found in an execution trace. Additionally, in many cases,
such monitors can be created in a tree structure [56], where the verdict of monitors in level
1 depends upon the verdict of monitors at level 7 + 1 in the tree.

For example, a formula Vpid Vfd - usedBy(pid, fd) — (open(pid, fd) — O close(pid, fid))
needs to be evaluated using two types of objects namely pid and fd. This formula expresses
the property that for all processes and all file descriptors, if a file descriptor is used by a
process, then an open action on the file descriptor is eventually followed by a close action.
A monitor for this first-order LTL formula is created using a tree-structure of monitors
for the underlying LTL formula. The structure consists of LTL monitors for every fd used
by each process. All such monitors, which belong to a particular process, are the children
of the parent monitor for the respective pid. The parent monitor maintains the verdict
of the LTL formula for its sub-tree. The top level monitor, which holds the verdict of
evaluation for the first-order formula, is the parent of all monitors for individual processes.
The verdict of the top-level formula is determined by performing an aggregation operation
on the verdicts of all child monitors. This operation, whose definition depends upon the
type of quantifier, can be performed in parallel, and such parallelization can be efficient
provided a large number of monitors exist for a monitor in its subtree. Parallel algorithms

for aggregation operations are proved to be performance efficient for processing large scale
data [60].

To verify the feasibility of this approach, we implemented a variant of the monitoring
algorithm [56] described by Medhat et al. for a fragment of first-order LTL. The environ-
ment described in Section 4.2 is also used for this experiment. We verified the performance
of sequential and parallel monitoring algorithms in terms of the execution time for per-
forming the aggregation operations to produce the final verdict for a first-order formulas.
We note that the LTL monitoring functionality is identical for the parallel and sequential
monitors. However, the implementation of aggregation operation for the ‘existential’ and
‘universal’ quantifiers differs in terms of the implementation and usage of multi-cores. We
experimented by generating the monitors for following properties using RitHM’s monitor
generator for the aforementioned fragment of first-order LTL.

Property 1: Vz; - a(z;) = Ob(x;).
Property 2: Yy, Vo, - O(a(2y, y1) = (b(77,y1) U ez, y1)))

38

Property 3: Yy, Vay - O(a(zg, y1) A (Ob(71,91)))

Property 4: V2 Yy, Va1 - a2y, Y1, 21) — (=b(21, y1,21) Ualzs, Y1, 21)))

We compared the performance of parallel and sequential monitors for different size of traces
by varying the number of objects for each object type referred in the quantifiers. We use
20 replicates for the experiments. For Property 1, the number of child monitors of the
top-level monitors is same as that of the number of objects of type ‘z;’. For Property 2,
the number of objects of type ‘y;” is set to 10. For Property 3, the number of objects of
type ‘y1” is set to 1000. For Property 4, the number of objects of type ‘y;’ is set to 100,
and the number of objects of type ‘z;’ is set to 100. The number of objects of type ‘x;’ is
varied from 4,000,000 to 12,000,000. We intend to verify the required size of data for which
the benefits of parallel algorithm can be achieved. We note that the parallel implementa-
tion performs additional work in terms of the number of executed instructions. Further,
the overhead of fork-join model of Java threads may cause the parallel implementation to
actually perform slower than the sequential algorithm provided the volume of data is less
than a certain threshold.

As shown in Figure 4.3, the results are shown for the comparison of monitoring overhead
for the four properties. The x-axis shows the number of objects of type ‘z;’. The y-axis on
left shows the execution time of the monitor to produce a verdict by performing aggregation
operations, i.e., the time to perform aggregation operation(s). We note that the time for
evaluating the underlying LTL formula is identical for both the variants. The y-axis on right
provides the maximum number of monitors used for the evaluation of a quantifier. The
results show that for Property 1 and Property 2, the parallel implementation outperforms
the sequential implementation. For these two properties, the number of monitors used for
the evaluation of quantifiers is high. Thus, the parallel reduction outperforms the sequential
reduction. The speedup achieved varies primarily due to the effects of garbage-collection
operation and the extra overhead of spawning threads.

On the other hand, for Property 3 and Property 4, the maximum number of monitors
used for the evaluation of quantifiers is not big enough to achieve the benefits of parallelism,
and the extra-overhead of executing multiple threads affects the performance. Thus, the
sequential implementation outperforms the parallel implementation. These experiments
highlight that the parallel algorithm can be useful for monitoring traces with a large num-
ber of objects. Consequently, such algorithms can be potentially applied for monitoring
large-scale cloud applications. In our experimental configuration, we found that when an
aggregation operation, executed during an evaluation of a first-order formula, is performed
on a large number of objects, the parallel monitoring algorithm consistently outperforms
the sequential variant.

39

% 2400 1.2e+07
°
= T
§ 2200 1 1.1e+07
2 2000
E A 1 1e+07
c 1800 %
bt 1 9e+06
5 1600 +
£ !

1400 1 8e+06
2 1]
g 1200 1 7e+06
£ 1000
[i= A -1 6e+06
§ 800 =
§ 600 ._ 1 5e+06
@ 400] 40406

4 6 8 10 12
Number of Objects of Type x4 (in millions)
Execution Time of Sequential Monitor =—=1
Execution Time of Parallel Monitor s
Max. Number of Monitors in a Subtree &
(a) Property 1

- 1800 = 12000
2
3 1600 1 11000
(2]
= A]
E 1400 4 10000
[=
g 4 9000
S 1200
5 A 4 8000
§ 1000
e 4 7000
= 800 4 6000
c
2
5 600 4 5000
%
] 400 4000

4 6 8 10 12
Number of Objects of Type x4 (in millions)

Execution Time of Sequential Monitor =——=3
Execution Time of Parallel Monitor s
Max. Number of Monitors in a Subtree &

(c) Property 3

Max. Number of Monitors in a Subtree

Max. Number of Monitors in a Subtree

Execution Time of Monitor (in milliseconds)

Execution Time of Monitor (in milliseconds)

2200
2000
1800
1600
1400
1200
1000

800

600

400

3500

3000

2500

2000

1500

1000

500

0

4 6 8 10 12
Number of Objects of Type x; (in millions)

Execution Time of Sequential Monitor ==—=1
Execution Time of Parallel Monitor s
Max. Number of Monitors in a Subtree 4

(b) Property 2

1.2e+06

1.1e+06

1e+06

900000

800000

700000

600000

500000

400000

1200

1 1100

1 1000

800

14 4ds

Number of Objects of Type x4 (in millions)

Execution Time of Sequential Monitor =——=3
Execution Time of Parallel Monitor s

Max. Number of Monitors in a Subtree 4

(d) Property 4

400

Figure 4.3: Comparison of Monitoring Overhead for Parallel and Sequential Algorithms

4.4 Interoperability between RitHM’s Monitors

RitHM facilitates interoperability between different monitoring algorithms. This feature
enables a functionality where a Monitor plugin’s output can be utilized as an input vari-
able by another Monitor plugin. An output of a Monitor plugin is a truth-value from a
truth-domain, which is a partially ordered set with an upper bound and a lower bound.
Hence, output of Monitor plugins may necessarily not be boolean values. For example, a

40

Max. Number of Monitors in a Subtree

Max. Number of Monitors in a Subtree

LTL3 monitor [11] produces an output in truth-domain B3 = {T, L, ?}. Hence, the inter-
operability feature requires that the Monitor plugins are compatible w.r.t. the processing
of truth-domains. The design decision to facilitate the interoperability between monitoring
algorithms is driven by following factors.

Firstly, a specification can be divided into sub-formulas, and each of these sub-formulas
could be monitored using different efficient algorithms. In this case, the respective sub-
formulas could be processed by different Monitor plugins of RitHM. The can improve
performance of monitoring as efficient algorithms for respective fragments of logical for-
malisms can be reused. For example, a formula expressed using MTL may contain a
sub-formula, which could be monitored using the recursive definition based algorithm [35].
This algorithm is memory efficient as compared to that of the standard algorithm for
monitoring MTL because it is based on recursive definitions and requires bounded buffer.
The interoperability feature ensures that the verdicts of different monitors for different
sub-formulas can be seamlessly combined to derive the final verdict.

Secondly, the interoperability feature enables extension of monitoring algorithms. As
described previously, different logical formalisms have evolved with extension or augmen-
tation of their features. Hence, corresponding monitoring algorithms can also be extended
by reusing features of other algorithms by utilizing the interoperability feature.

While interoperability can help efficient monitoring, the performance benefits vary for
different use-cases. For example, if a final verdict depends on verdicts of different sub-
formulas, then a reduction in latency by one of the monitoring algorithms does not con-
tribute for corresponding reduction in latency to arrive at the final verdict. However, the
interoperability feature can be useful for achieving efficiency in memory utilization in such
cases.

4.5 Evaluation of architectures using ATAM

Various methods such as architecture trade-off analysis method (ATAM) [13], software
architecture analysis method (SAAM) [17] are used for structured of evaluation of software
architectures. ATAM has been a leading method for evaluating software architectures.

ATAM evaluation works w.r.t. the business drivers of an architecture. The business
drivers are in turn used to identify the non-functional requirements, which an architecture
needs to exhibit. The non-functional requirements are referred to as quality attributes.
ATAM helps to predict the consequences of architectural decisions for attaining the spec-
ified quality attributes at an early stage of a project. Thus, ATAM provides trends w.r.t.

41

the existence of risks, non-risks, sensitivity points and trade-off points in an architecture.
The description of these notions is as follows.

e Risks are the design decisions, which might create problems for some quality at-
tributes.

e Non-risks are good design decisions, which enables an architecture to meet certain
quality attribute(s).

e Sensitivity points are the design alternatives for which a slight change in the alter-
native can cause a significant impact on a quality attribute.

e Trade-off points indicate an existence of design alternatives, which affect multiple
quality attributes.

In this sub-section, we provide evaluations of RitHM’s architecture and architectures?
of RiITHM [63], the predecessor of RitHM, MOP [58] and LARVA [22]. These evaluations
highlight the benefits of various unique design features of RitHM. We note that comprehen-
sive details about the architectures are not available in some cases. However, the purpose
of the evaluation is to provide trends w.r.t major architectural decisions. To our knowl-
edge, our evaluation is the first architectural analysis of frameworks and tools in the RV
community.

Although the business drivers of different RV tools and frameworks are different, the
requirements w.r.t. the quality attributes are often identical. CSRV’14 evaluated various
RV tools and frameworks based upon their expressivity and efficiency. This evaluation
criteria of CSRV’14 suggests that modifiability is one of the important quality attributes
of RV frameworks because it facilitates expressivity as well as performance. In general,
a single logical formalism is not sufficient for serving different use-cases [78]. Similar can
be argued about the efficiency of monitoring algorithms as different variants of monitoring
algorithms for a logical formalism are useful for different use-cases. Usability is also an
important quality attribute because it is required that RV frameworks offer a user-friendly
interface to users.

4.5.1 Evaluation of RitHM’s Architecture

In this sub-section, we describe the ATAM evaluation for RitHM. As a first step in ATAM,
we identify the business drivers for RitHM as follows.

2The evaluations are based on available description about architectures of the tools and frameworks.

42

e Provide a user-friendly interface to an RV system.

e Support tailoring RitHM for different use-cases w.r.t. monitoring different types of
specifications.

e Support tailoring RitHM for different use-cases w.r.t. monitoring under constraints
for efficiency in terms of execution-time, memory-usage, etc.

e Support RitHM with different types of reusable configurations on various OS plat-
forms and allow integration of RitHM into diverse types of software systems and their
test-beds.

Based upon the business drivers, we identified following quality attributes for RitHM’s
architecture.

e Modifiability: A user should be able to tailor a RitHM instance for different needs
w.r.t. the requirement of using different logics for verification, and different con-
straints w.r.t. efficient monitoring in terms of resource-consumption.

e Usability: A user should be able to develop specifications and configure a RitHM
instance in an easy way.

e Performance: RitHM should enable efficient monitoring in terms of execution time
and memory usage.

e Modularity and Portability: A user should be able to use RitHM’s modules within
applications and their test-beds across different OS platforms.

We note that modifiability is one of the most important attributes of an RV setup because
RV setups primarily perform the task of automated code-generation for the verification task
under different use-cases for various domains. A requirement of synthesizing monitors in an
automated manner for different types of specifications and software systems underscores
the importance of modifiability for RV frameworks. Further, different use-cases for RV
often show a trade-off between modifiability and performance. When an architectural
decision can cause such trade-off, the core architecture of RitHM is designed to focus more
on modifiability than performance in order to serve different use-cases. Due to a use of
plugins, a user could develop efficient plugins for many use-cases.

We evaluated RitHM’s component-based architecture for the aforementioned critical
quality attributes. We depict some important findings of this evaluation. Architectural
approaches for RitHM’s design are as follows.

43

Object-oriented and component-based architecture with most of the key processing
components supported as plugins

Layered architecture with segregation of front-end components from back-end com-
ponents.

A use of configuration files for setup of an RitHM instance.

Integration of reflection features to load and utilize RitHM plugins at run time

Table 4.2 depicts various scenarios for the usage of RitHM. For the sake of brevity,
we consider a few scenarios of RitHM, where programs or execution traces are monitored
with a set of built-in plugins under minimal changes to RitHM’s configuration. Use-case
scenarios U1-U8 depict such cases of common use of RitHM. For example, monitoring of
FOLTL formulas using the parallel algorithm is a typical use-case, which does not warrant
changes to any of the components in RitHM’s architecture. Such typical use-cases often
identify ‘performance’ as the key quality attribute of RitHM. Various design alternatives
such as a use of parallel-algorithms and heterogeneous back-ends highlight the provisions in
RitHM'’s various plugins for achieving the desired performance requirements for respective
use-cases. Such requirements differ for different use-cases. Additionally, different plugins
for controlling invocation of monitors allow reducing the overhead of RV due to context
switches.

We note some of the design decisions, which focus on ‘performance’ as the quality
attribute. The associated non-risks are also described.

e The architectural decision of segregation of the Invocation-controller component and
the Monitor component is motivated by the importance of performance in RV. This
segregation allows that a user could configure a RitHM instance by using efficient
monitoring algorithms as well as efficient means of controlling the invocation of the
monitoring algorithms. The segregation of components in this case allows a fine-
grained control to meet the efficiency requirement.

e The architectural decision of allowing interoperability between different Monitor plu-
gins allows using efficient algorithms for different sub-specifications of a specification.

e A use of heterogeneous back-ends with parallel algorithms allows RitHM to efficiently
monitor specifications.

44

The scenarios in Table 4.2 include three categories namely use-cases, growth and ez-
ploratory scenarios. The growth scenarios depict modifications to RitHM in which specific
components of RitHM’s architecture are changed. On the other hand, the exploratory
scenarios depict extensive modifications to RitHM’s components and their interactions.
Growth scenarios G1-G12 highlight a need for modifiability as one of the quality attributes
of RitHM’s architecture. This attribute is in turn derived from a need for use-case spe-
cific performance and expressivity requirements. In order to address this quality attribute,
we took following architectural decisions. The non-risks associated with the architectural
decisions are also noted.

e RitHM'’s architecture has two main layers. RitHM’s front-end components are decou-
pled from its back-end because the modifiability scenarios of the front-end compo-
nents differ from those of the back-end components. This design decision also allows
porting multiple front-end components in combination with a back-end component,
and vice versa.

e Various components of RitHM’s architecture are supported as plugins, and a built-in
hierarchy of base classes is provided to facilitate the implementation of plugins.

e Monitor is separated from Verdict-listener allowing changes in steering actions with-
out any changes in the Monitor.

e Predicate-evaluator is separated from Observer and Monitor. This allows changing
predicate-evaluation scripts without modifications in Observer and Monitor.

e The separation of Invocation-controller from Monitor allows changing overhead con-
trol schemes without changing monitoring algorithms.

e The separation of Observer from other components allows changes in the process of
event extraction without changing the remaining RV setup.

A need for portability is highlighted by Scenario G6 where a RitHM instance needs
to deployed on Mac OS. Scenarios G7 and G8 highlight a need of portability between
RitHM'’s front-end components and its back-end components. Further, scenarios G10 and
G11 highlight a need for modularity, where RitHM’s individual components need to be used
in conjunction with other third-party tools. This gives flexibility to a user to independently
use individual components of RitHM within an RV setup. For achieving portability and
modularity, we made following architectural decisions.

45

e Implementation of RitHM’s core components is done in Java, which provides an OS
independent layer and allows RitHM to be ported on different OS platforms.

e RitHM’s front-end components are separated from its back-end components, which
allows porting different front-ends to back-ends and vice versa.

e A set of APIs is provided for each of RitHM’s components, which are supported as
plugins.

The scenarios Ub, U7, G8, G9 and G12 show a need of usability as one of the impor-
tant quality attributes. Writing specifications is one of the most important and complex
phases of performing RV. Thus, easy and user-friendly ways of describing specifications are
required for RV. In the context of programming languages, this has been done by (1) iden-
tifying commonly used patterns of usage of constructs (2) developing high-level constructs
to abstract the complexity of such patterns. Similar process can prove beneficial in case of
RV. For facilitating usability, we took following design decisions.

e Separate monitor-generation process from the specification-validation and translation
phases. This allows Specification-rewriter to rewrite high-level specifications into low-
level specifications, which can be inputted to Monitor-synthesizer.

e A use of configuration files allows modifying only required parts of an existing
configuration of a RitHM instance. Further, web-interface can be developed as a
presentation-layer, and it can create configuration files based upon a user’s input.
Such layered architecture can allow a further increase in the usability of RitHM by
adding more features in the presentation layer.

The exploratory scenarios E1-E7 indicate a need for exhaustive and complex changes
in specific contexts. Such scenarios depict a need to change RitHM’s internal components.
These scenarios involve multiple quality attributes, and they help to identify various sen-
sitivity points and trade-off points.

The ATAM analysis of RitHM can be summarized in the form of risks, non-risks,
sensitivity-points and trade-off points. Various non-risks have been described previously
with the associated architectural decisions.

The trade-off points are described as follows.

e This decision of using Java for implementing RitHM marks a trade-off between per-
formance and portability. While the performance gap between ‘C’ and Java is de-
creasing [72], such gap can still prove to be significant under various contexts. For

46

example, embedded systems use ‘C’ code to achieve the specified performance under
strict constraints for computing resources. The use of Java for the development of
RitHM shows a trade-off point between performance and portability as Java is more
portable than ‘C’ on different OS platforms.

RitHM internally uses a hash map to store the details of an event, i.e., a program
state. While this allows less modifications to RitHM’s Observer plugins for many of
the use-cases, it reveals a trade-off between performance and modifiability because
application-specific formats often tend to be more efficient in terms of memory and
execution-time.

Using dynamic buffers instead of static buffers provides flexibility to add different
schemes for controlling the monitor-invocation with minimal coding changes. This
decision also depicts a trade-off between performance and modifiability as static
buffers can prove to be more performance efficient than dynamic buffers.

A decision to use configuration files for setting up a RitHM instance shows a trade-
off between usability and performance. While using configuration-files adds another
layer and may slow-down the initial processing, it increases the usability by allowing
a user to reuse previously created configurations.

The risks are described as follows.

e A support for multiple programming languages would require changes in existing plu-
gins of following types: Invocation-controller, Predicate-evaluator, Verdict-listener
and Monitor-generator.

The sensitivity points are described as follows.

e A provision to allow variable number of command-line arguments in RitHM’s com-
mand processor increases the modifiability of all RitHM components, and implemen-
tations of new plugins can utilize additional arguments.

e The task of developing monitor synthesizers for FPGAs, a unique back-end, poses
challenges in terms of modifiability of most of the components of RitHM. As RitHM
is designed to be a general-purpose framework, we note this sensitivity point during
our evaluation.

47

e The segregation of front-end components from back-end components shows a sensitiv-
ity point in terms of usability, modifiability and modularity. This decision increases
the ability of the architecture to exhibit these quality attributes.

e Providing APIs for Observer shows a sensitivity point for modifiability, and this
design decision allows a use of various available instrumentation frameworks with

RitHM.

4.5.2 Evaluation of RiTHM’s Architecture

The architecture of previous version of RitHM, i.e., RiITHM has been described in [63]. As
previously indicated, we evaluate the architecture based upon modifiability, performance
and usability as the quality attributes. We report the findings in the form of non-risks,
risks, sensitivity points and trade-off points for the architecture. The scenarios, consid-
ered for the evaluation, are a sub-set of scenarios considered for the evaluation of RitHM
framework’s architecture. The findings show that RiTHM’s architecture focusses primarily
on performance. However, the architecture requires improvements w.r.t. modifiability and
usability because many of the components are tightly coupled and are not supported as
plugins.

The non-risks are identified as follows.

e The design supports efficient methods for controlling the invocation of monitors by
using time-triggered monitors with fixed as well as dynamic polling period. These
schemes can be used to reduce the extra overhead of monitor invocation for different
use-cases w.r.t. memory consumption and no. of context switches.

e The design supports utilizing GPUs for executing parallel monitoring algorithms for
Lrr. This enables efficient monitoring in terms of execution time as well as CPU
consumption.

The risks are identified as follows.

e Monitor-generator and Instrumentor are tightly coupled. The architecture can be
improved by segregating the responsibilities of these components. With current de-
sign, monitoring can only be performed on programs, instrumented by RiTHM’s
instrumentor. Further, modifying the architecture for offline monitoring of traces in-
volves significant changes in Monitor-generator because its current implementation
only supports the data-format produced by the instrumentation.

48

Type ID | Scenarios Changes in RitHM’s Components
Ul | Monitor LTL formulas with LTL3 monitor None
on XML trace with ETRV
U2 | Monitor FOLTL formulas None
on CSV trace with BTRV the
Use-cases - - -
U3 | Monitor MTL formulas with MTL monitor None
on CSV trace with BTRV
and ‘Lua‘ script for predicate evaluation
U4 | Perform online monitoring of a Java program None
to monitor MTL formulas with RMTL monitor
U5 | Monitor LTL formulas using Dwyer’s patterns None
with LTL3 monitor on trace of a Java program.
U6 | Monitor PTLTL formulas None
on a C program using RitHM’s server mode
U7 | Change formulas for an existing None; Changes in RitHM’s configuration file
RitHM setup
U8 | Monitor FOLTL formulas on XML traces None
with parallel and sequential algorithms
by dividing formulas into sub-formulas
G1 | Add functionality to monitor a new New plugins for Monitor-synthesizer and
logical formalism Specification-rewriter
G2 | Add functionality to extract data New Observer plugin
in Common Log Format from a web-server
G3 | Add functionality to steer a Java Program New Verdict-listener plugin
Growth upon violation of a safety formula
G4 | Add functionality for predicate-evalutor New Predicate-evaluator plugin
scripting in Scala
G5 | Add functionality for control-theoretic New Invocation-controller plugin
Invocation-controller implementation
G6 | Port RitHM on Mac OS Migrate and test plugins
which use native libraries; Execute smoke tests
G7 | Add implementation of a new monitoring New Monitor-synthesizer plugin
algorithm for FOLTL
G8 | Add specification-processing feature New Specification-rewriter plugin
for patterns of Regular Expressions and PTLTL | which extends existing plugins
for PTLTL and Regular Expressions
G9 | Use RitHM’s Specification-rewriter for None; Changes in scripts
Dwyer’s pattern with other tool providing
implementation of LTL monitoring algorithm
G10 | Use RitHM’s Verdict-listener for None; Changes in scripts
other monitoring tools
G11 | Add new command-line options for Changes in Invocation-controller plugin
controlling monitor invocation
G12 | Develop high-level language based on New Specification-rewriter plugin
patterns for MTL
E1 | Change RitHM’s data-structures Major changes required in Observer, Monitor-synthesizer, Monitor
for storing events, predicates and verdicts Predicate-evaluator and Invocation-controller plugins;
Changes in class-hierarchy for monitor’s verdicts
Exploratory | E2 | Add FPGA back-end to RitHM Major changes required in Observer, Monitor-synthesizer
Predicate-evaluator, Invocation-controller
and Verdict-listener plugins
E3 | Change memory allocation scheme for RitHM’s | Major changes required in Observer, Monitor
event-buffer from dynamic to static and Invocation-controller plugins
E4 | Change base APIs for Monitor-synthesizer, Same as that of E1
Specification-rewriter, Observer, etc.
E5 | Add distributed monitoring to RitHM Same as that of E1
E6 | Change RitHM’s command-line parameters Same as that of E1 and the Command-handler
E7 | Add new component to RitHM’s design Changes in front-end components

for searching specifications with patterns

Table 4.2: Different Scenarios for Usage of RitHM

49

e There is no separate Observer component in the architecture. An addition of this
component to the architecture can improve the modifiability. With current design,
a use of the tool for online monitoring via APIs requires significant changes in order
to ensure that different data-formats can be consumed by generated monitors. If a
new instrumentation utility needs to be utilized, then similar changes are required in
various components.

e Since the design does not support the front-end components as plugins, significant
changes are needed in order to process different logical formalisms. This also affects
usability because the specification-processing and monitor-generation phases are per-
formed by Monitor-generator.

e Globalizer, which changes the storage class of certain variables to ‘global’” for instru-
mentation purposes, may cause problems for large programs because global variables
are generally not recommended. Such transformation can affect modularity as well
as readability of programs.

e The verdict of a monitor is logged in a file. A separate component for steering a
program based upon the monitor’s verdict is not supported.

The sensitivity points are identified as follows.

e RiTHM uses a configuration file for the setup of a RiITHM instance. Any changes in
the syntax of configuration files are likely to cause modifications in multiple compo-
nents.

e A use of Globalizer and Glue Code Generators makes the architecture sensitive to
changes because a major change in these components is likely to affect most other
components including Monitor-generator and Controller-generator.

e Using a third-party tool, i.e., 1t13tools for monitor generation causes the architec-
ture to be sensitive to changes in the third-party tool?.

The tradeoff points are identified as follows.

e A program and the corresponding monitor run as different threads in a single pro-
cess. While this reduces the runtime overhead, it affects the modifiability as the two
components are tightly coupled.

3This was observed during our work on porting RiTHM to Mac OS.

20

While changing the storage class to ‘global” during the instrumentation reduces the
runtime overhead in terms of memory usage, it affects the modifiability of the pro-
gram. Further, the usability of the setup also gets affected because a use of global
variables is generally not recommended.

4.5.3 Evaluation of MOP’s Architecture

The architecture of MOP framework has been described in detail in [58]. As previously
indicated, we evaluate the architecture based upon modifiability, performance and usabil-
ity as the quality attributes, and we report the findings in the form of non-risks, risks,
sensitivity points and trade-off points for the architecture. The findings highlight that
MOP is a highly modifiable and modular framework. However, it can be further improved
in terms of its features for facilitating efficient monitoring.

The non-risks are identified as follows.

A use of language clients, which allow monitor-generation for different programming
languages, provides an easy way to add monitor-generation for softwares written in
different programming languages.

Logic-plugins facilitate adding monitor-generation process for a new logical formal-
sm.

A wuse of language-independent pseudocode as a generic way of synthesizing moni-
toring procedures allows MOP to add support for a programming language without
modifying its logic-plugins.

Recovery-handlers enable a program to be steered into a correct state, and such
handlers can be provided as code snippets in respective programming languages.

Logic-plugins can also facilitate the process of creating extensions and high-level
logical formalisms of existing logical formalisms.

Language clients also facilitate utilizing heterogeneous back-ends for efficient execu-
tion of monitor.

The risks are identified as follows.

ol

e In MOP, a language client handles the instrumentation task in one of its layers. As
described earlier, different instrumentation tools and frameworks have been developed
for efficient instrumentation techniques. Thus, performance improvement can be
achieved by adding a standard interface for using different instrumentors as plugins.

e An addition of component in the design to use various overhead-control schemes such
as TTRV and BTRV can help to reduce the runtime overhead.

e The standard syntax for configuring language clients may be restrictive for evaluating
predicates (resp. propositions) for various use-cases of monitoring.

The sensitivity points are identified as follows.

e A use of standard syntax by language clients of MOP framework highlights a sensi-
tivity point. Any modifications to this syntax would cause changes in all layers of
the respective language client.

e A use of pseudocode for monitor-generation shows a sensitivity point, where changes
in the constructs of the pseudocode affect most of the components of the architecture.
Thus, modifications in the constructs of the pseudocode would result in modification
and validation of the functionality of most other components.

The tradeoff points are identified as follows.

e A use of pseudocode for monitor-generation shows a tradeoff point between perfor-
mance and modifiability. Using pseudocode facilitates modifiability. However, it may
affect the performance because a translation of some pseudocode constructs to spe-
cific programming languages may not be available. Hence, some efficient monitoring
algorithms for specific fragments of logical formalisms cannot be used in certain pro-
gramming languages. For example, pseudocode constructs for parallel monitoring
may not get used in a programming language, which does not provide the corre-
sponding parallelism requirements.

4.5.4 Evaluation of LARVA’s Architecture

LARVA is a tool for monitoring real-time properties of Java programs. A brief description
of LARVA’s architecture is available in [22]. The findings show that LARVA’s architecture

o2

is modifiable, and certain improvements can be made in the architecture to increase the
efficiency of monitor execution and the usability of the front-end components.

The non-risks are identified as follows.

e LARVA supports multiple logics, which are translated to dynamic automata with
timers and event (DATE). With this feature, it is possible to develop high-level
extensions of the logics without changing the monitor synthesis algorithm.

e The property-analysis feature allows an estimation of extra overhead caused due to
monitoring.

The risks are identified as follows.

e LARVA only supports AspectJ based instrumentation. Thus, processing traces for of-
fline monitoring and monitoring applications using other instrumentation tools would
require significant changes in most of the components.

e The architecture does not support porting different back-ends to front-ends, and
vice versa. Thus, different monitoring algorithms cannot be used for specifications
described using a logical formalism.

e Although extra-overhead can be measured by using property-analysis feature, the
architecture does not support components for controlling the overhead due to monitor
invocation.

e The feedback system relies on AspectJ. Thus, any changes in instrumentation scheme
require changes in feedback system as well.

The sensitivity points are identified as follows.

e The architecture heavily relies on AspectJ technique. Any change in this instrumen-
tation scheme would cause changes in components handling feedback, evaluation of
predicates, etc.

e While DATE is a highly expressive logical formalism, a high-level specification lan-
guage ,which can be translated into a automata can increase the usability. Such
high-level languages are useful because automata construction processes are gener-
ally complex.

23

e A decision of using DATE as a ‘native’ logical formalism for front-end enables LARVA
to support other logical formalisms such as Lustre, QDDC and DC.

There were no tradeoff points identified based upon the given description of the archi-
tecture.

4.5.5 Discussion

Following conclusions can be drawn based upon the observations of the ATAM evaluation
for the aforementioned tools and frameworks.

e Although architectures of some tools such as MOP and LARVA exhibit features for
facilitating usability, RitHM’s business drivers directly identify usability as one of
the primary quality attributes.

e Most of the architectures primarily focus on one of the quality attributes and need im-
provements w.r.t. other quality attributes. RitHM’s architecture focuses on multiple
quality attributes and attempts to achieve a balanced tradeoff between them.

e Only RitHM’s architecture exhibits a clear segregation of responsibilities between
front-end and back-end components of an RV setup.

e While most of the components of the architectures of RiTHM, MOP and LARvA
are sensitive to some architectural decisions, RitHM’s architecture tries to limit such
sensitivities, which affect a large number of components of an RV setup. RiTHM’s
architecture is sensitive w.r.t. the modifications in its instrumentation process. For
MOP, the architecture is sensitive to modifications in the syntax of language clients
and the pseudocode. LARVA relies on its usage of aspects in most of its components.
For RitHM, we tried to limit such sensitivities by making various architectural deci-
sions.

Thus, the analysis shows that RitHM’s business drivers and the unique features of its
architecture are important to simultaneously achieve the various goals of an RV setup.

o4

Chapter 5

Case-studies for Monitoring using
RitHM

In this Chapter, we present the results of an evaluation of RitHM’s features using real-world
data-sets. The first case study depicts our evaluation of monitoring Google cluster-usage
traces using RitHM. Further, the second case study shows the applicability of RitHM’s
features while monitoring the traces of an Engine Control Unit (ECU) of a Toyota 2JZ
engine.

5.1 Monitoring Google Cluster Traces

A Google cluster is a set of machines, packed into racks, and connected by a high-bandwidth
cluster network [68, 78]. Work is performed on the cluster in the form of jobs, each
comprising one or more tasks. Tasks and jobs are scheduled onto different machines. The
data-set used in this case-study, provides data from an 12.5k-machine cell over about a
month-long period in May 2011. Tasks and jobs progress through different states such as
‘submitted’, ‘scheduled’, ‘failed’, etc. We use a fragment of first-order LTL to define and
verify following properties for multiple jobs and tasks. These properties verify the behavior
of jobs and tasks w.r.t. their transitions.

Property 1: (Vtask - submit(task) — O finish(task)) A (Vjob - submit(job) — O finish(job)).
This property states that for all jobs and tasks, a ‘submit’ event is eventually followed by
a ‘finish’ event.

Property 2: (Vtask - upd_running(task) — upd_running(task)U finish(task)) A (Vjob -

95

No. | No. of Tasks | No. of Jobs
1 4,000,000 95,384
2 5,000,000 129,456
3 6,000,000 162,066
4 7,000,000 188,711
5 8,000,000 210,350

Table 5.1: No. of Tasks and Jobs

upd _running(job) — upd_running(job) U finish(job)). This property states that for all jobs
and tasks, if an update happens at runtime, then it would keep happening until the job or
the tasks finishes.

Property 3: (Vtask - submit(task) — O (upd_pending(task) V schedule(task) V kill(task)
V fail(task) V evict(task)))A

(Vjob - submit(job) — O (upd_pending(job) V schedule(job)V kill(job)

V fail(job) V evict(job))). This property states that after a job or a task is submitted, it
fails or is updated or is scheduled or is killed or is evicted.

We monitored these properties for jobs and tasks for different configurations. For
each configuration, a certain number of tasks and corresponding jobs are selected. Our
experimental environment for this experiment is identical to the one used in the previous
chapter. The number of tasks and jobs used for different configurations in this experiment
is described in Table 5.1. We note that more number of tasks may exist for the specified
jobs. For the sake of simplicity during the experiment, we chose the given number of tasks
and the corresponding jobs.

We utilized a variant of the algorithm [56] developed by Medhat et al. for monitoring
the properties. We decompose the property into sub-properties for the jobs and the tasks.
The sub-properties are monitored separately. We also note that the traces for jobs and
tasks are produced separately. With reference to our findings in the previous chapter,
we utilize the parallel algorithm for monitoring the property for the tasks. However, we
utilize the sequential algorithm for monitoring the property for the jobs because a use
of the parallel algorithm is unlikely to achieve the benefits considering the given no. of
jobs. In Figure 5.1, the execution time for performing the aggregation operation for the
evaluation of the quantifiers is reported for the sub-specificaton for monitoring the tasks.
For monitoring the jobs, this execution time for performing aggregation is found to be
identical because parallelization is not enabled for both variants.

We note that the interoperability of parallel and sequential monitors for the same

o6

fragment of first-order LTL provides the flexibility to utilize both sequential and parallel
monitoring algorithms. In this case, the property was divided into parts and each of these
parts are monitored using variants of the monitoring algorithm. For large-scale data, the
utilization of multiple back-ends along with the interoperability feature can prove beneficial.

% 1400 1400 % 1300 1300
-g = -g L
§ 1300 o 1300 § 1200 1200
(2] (2]
= 1200 1200 = =
z g 1100 1100
% 1100 1100 ‘i/ 1000 1000
% 1000 1000 é -
s L & 900 900
5 900 4 900 5
2 T 800 — 1 800
S 800 4 800 L
=4 =3
g 700 1{ 700 g 70 o 700
é 600 1 600 é 600 4 600
= 500 | 1 500 = 500 -4 500
: | : [
w400 400 w400 400
4 5 6 7 8 4 5 6 7 8
Number of Tasks (in millions) Number of Tasks (in millions)
Execution Time of Sequential Monitor E==——3 Execution Time of Sequential Monitor ==—2
Execution Time of Parallel Monitor s Execution Time of Parallel Monitor s
(a) Property 1 - Google Cluster Traces (b) Property 2 - Google Cluster Traces

% 1400 1400

2

g 1300 T 1300

8 = T

= 1200 1200

S

£ 1100 B 1100

% 1000 1000

°©

5 900 ~4 900

S 800 1 800

s

= 700 + 700

"6 —

[600 -1 600

£

= 500 - I 1 500

2

w400 400

4 5 6 7 8

Number of Tasks (in millions)

Execution Time of Sequential Monitor ==—=
Execution Time of Parallel Monitor s

(c) Property 3 - Google Cluster Traces

Figure 5.1: Comparison of Monitoring Overhead for Google Cluster Traces

57

5.2 Monitoring Engine Control Unit (ECU) Traces

In this case study, we analyze traces [57] from an ECU, which controls multiple actuators
and sensors for a Toyota 2JZ engine. The traces depict the metrics of various sensors of
the ECU during a step test for a duration of 34 seconds. The ECU controls fuel injection
based upon the values of parameters namely ‘Engine RPM’ and ‘Engine Load’. In general,
the value of parameter ‘Engine Load” can be measured by multiple ways such as throttle
position and manifold pressure. The lambda value is the air-to-fuel ratio, which depends
upon the fuel injection process. In general, if the lambda value is over 1.0, then the mixture
of air and fuel is considered ‘lean’. If the lambda sensor reports value less than 1.0, then
the mixture is considered ‘rich’. While ‘lean’ mixtures may cause engine damage due to
increased temperatures, ‘rich’ mixtures result in low mileage. A lambda value of 1.0 is
considered ideal. Based on these parameters, we define properties for the verification of
ECU traces. The values of the aforementioned parameters for the dataset are shown in
Figure 5.2 using the plots. The properties define conditions over the value of the lambda
sensor w.r.t. the values of ‘Engine RPM’ and ‘Engine Load’.

Let rpm_over_4000 be an atomic proposition, which marks the condition when the value
of ‘Engine RPM’ goes over 4,000 from a value less than 4,000. Similarly, rpm_below_4000
be a proposition, which marks the condition when the value of ‘Engine RPM’ goes below or
becomes equal to 4,000 from a value greater than 4,000. In similar way, other propositions
are defined for different values of ‘Engine RPM’, lambda sensor and ‘Engine Load’. We
also refer to the parameter ‘Engine Load’ as load point. Some atomic propositions are
defined using comparison operators over the values of the aforementioned parameters.

Using Dwyer’s patterns [28, 29], we define and monitor the properties shown in Ta-
ble 5.2. Our experimental environment for this case-study is identical to the one used in
the previous case-study. The described properties belong to the classes namely ‘Response’,
‘Absence’, ‘Existence’ and ‘Universality. We implemented a Specification-rewriter plugin
for a subset of Dwyer’s patterns, and it translates the patterns into corresponding LTL for-
mulas, which are used to synthesize the corresponding monitors. The first property states
that after the value of ‘Engine RPM’ goes below 4,000 it is always a case that when the
value of ‘Load point’ becomes less than 80, then eventually the value of the lambda sensor
is in the range of 0.8 and 1.0. This property belongss to the ‘Response’ class. The second
property states that after the value of ‘Engine RPM’ goes over 4,000, the lambda value
goes above 1 until the value of ‘Engine RPM’ goes below 4000. This property belongs to
the ‘Existence’ class [28]. The third property states that when the value of ‘Engine RPM’
is above 4000, the lambda value is in the range of 0.8 and 1.2. The third property belongs
to the ‘Universality’ class. The fourth property is similar to the third property. It indicates

o8

No. | Formula Using Equivalent Size of

Dwyer’s Pattern LTL Formula LTL Formula

1 | After rpm_below_4000, O(rpm_below_-4000 — 8
event 0.8 < A< 1.0 O(load _pt < 80 —
Responds to event load_pt < 80 00.8<A<1.0))

2 | After rpm_over_4000 O((rpm_over_4000 A —rpm_below_4000) 9
Until rpm_below_4000 —
A > 1 becomes true (= (rpm_below_4000) U ((A > 1) A =(rpm_below_4000))))

3 | Between rpm_over_4000 and O((rpm_over_4000 A —rpm_below_4000A 10
rpm_below_4000, Qrpm_below_4000) — (0.8 < XA < 1.2
0.8<A<1.2 U rpm_below_-4000))

4 | Between rpm_over_2000 and O((rpm_over_2000 A =rpm _below_2000 11
rpm_below_2000 A Qrpm_below_2000) —
AF 12 (=(A > 1.2) Urpm_below_2000))

5 | Between (rpm_below_4000 A load_pt < 80) and | O(((pm_below_-4000 A load_pt < 80)A 14
(rpm_below_2000 A load_pt < 80) =((rpm_below_2000 A load_pt < 80))A
A > 0.8 Responds to O((rpm_below_2000 A load_pt < 80))) —
A <08 (A < 0.8 = (—=(rpm_below_-2000 A load_pt < 80)U

(A > 0.8 A =(rpm_below_2000 A load_pt < 80))))
U(rpm_below_2000 A load_pt < 80))

Table 5.2: LTL Properties for ECU verification

an absence of ‘lean’ mixture with lambda value over 1.2, when the value of ‘Engine RPM’
is over 2000. The fourth property belongs to the ‘Absence’ class. The fifth property, which
belongs to the ‘Response’ class, states that when the value of ‘Engine RPM’ is in the range
of 4,000 and 2,000 and the value of ’Engine load’ is less than 80, if lambda value goes below
0.8, then it eventually becomes greater than or equal to 0.8.

Table 5.2 shows the size of the corresponding LTL formulas. The size of a LTL formula
indicates its complexity. As shown in the table, Dywer’s patterns can be used to develop
high-level specifications, and they help to abstract the complexity of the underlying LTL
specifications. For the third property in Table 5.2, the LTL formula’s size is 10. However,
the property can be expressed using the pattern ‘P is true between Q and R’, which uses
the ‘between’ operator. As shown in Table 5.2, an application of such high-level operators
ensures that even though the complexity of the LTL formulas increases, the equivalent
specifications, which use such operators, are less complex. Thus, such high-level operators
abstract the complexity of the corresponding LTL formulas. Consequently, an ability to
process high-level specifications increases the usability of an RV framework. Further, these
findings also underscore the importance of RitHM’s design feature, which segregates the
front-end components from the back-end components in addition to the provision of the
functionality for rewriting specifications.

29

5000 1.2
100
= : g 80
g 108 3 L
£ 3000 5 = W
= S I
& 4 0.6 38 .‘E
2 2000 § 3w
=) i [S H
: A 0.4 & i \1
1000 {02 20 \
0 : 0 0 :
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time (in seconds) Time (in seconds)
Engine RPM Lambda Sensor Valug - Load Point Lambda Sensor Valug -
(a) Lambda value and Engine RPM (b) Lambda value and Load Point

Figure 5.2: Metrics of Engine Control Unit (ECU)

5.3 Lessons Learned

The implementation of RitHM helped us to understand various nuances of an RV setup.
In particular, the development of a comprehensive set of APIs for RV was a challenge. Our
participation in CSRV’14 helped the understanding of various use-cases and important
aspects about the comparative evaluation of RV tools. The evaluation parameters of the
competition helped to understand important components of an RV set-up.

We found that the current state of RV techniques requires a user to posses in-depth
knowledge of different logical formalisms. Further, our interaction with the personnel in
software development industry revealed that the developers and testers often prefer simple
ways of describing a system’s specifications. The logical formalisms of RV techniques
have evolved from those of other formal verification techniques such as model checking.
Model checking is performed by experts. Consequently, complex logical formalisms are
used for specifying a system’s specifications. On the contrary, runtime verification, which
is a lightweight but scalable formal method, aims to address the limitations of formal
verification techniques, and it is aimed to automate the process of verification for various
types of practitioners. This suggests that RV frameworks need to support easy ways of
describing specifications. RitHM provides support for extending its features using plugins
to facilitate the development of high-level abstractions of existing logical formalisms.

Further, we note that a use of heterogeneous back-ends such as GPU or multi-core

60

0.8

1 06

1 0.4

4 02

Lambda Sensor Value

CPU requires a profiling effort in order to tune a monitor for achieving the predicted
efficiency. This profiling effort can prove prohibitive for the scalability of RV techniques
as it is intended to be a generic method to synthesize and execute the monitors in an
automated manner. We believe that the advancements in the usage of GPUs and FPGAs
for general-purpose computing would help to counter this challenge.

Additionally, we noticed that a use of parallel algorithms can be useful for monitoring
parametric specifications. In general, runtime verification is a ‘Memory Bound’ work-
load [25] and not a ‘Compute Bound’ workload, i.e., monitors generally do not perform
computationally intensive operations. Thus, an effective use of accelerators such as GPUs
would require efficient ways of memory transfer. We believe that the advancements in the
usage of GPUs for general-purpose computing would help to counter this challenge.

61

Chapter 6

Problem Description for
Loss-tolerant Monitoring

In this chapter, we formally define the problem of monitoring of LTL in presence of a
transient loss of events in an execution trace. Further, we discuss the monitorability of
LTL under a transient loss of events and describe the criteria for the same.

6.1 Our Model

As shown in Figure 6.1, we assume that the program P is run under the supervision of
an observer O, which incrementally extracts events from P and feeds them to the monitor
M, which then verifies whether [0 = ¢|gy [13]. Due to the lossy link between the
observer O and the program P, the extracted word may contain gaps. We assume that the
observer transmits the trace to the monitor without any extra loss. We also assume that
the execution trace exhibits a transient loss of events.

Definition 7 (Transient Loss). Let 0 = aq,aq,...,a, € ¥* denotes a finite trace of size
n. The trace o exhibits a transient loss of a sequence of events iff there exists a non-empty

Program | .. .LOSSY___ | Observer No Loss 3| Monitor
Extraction

Figure 6.1: System Model

62

and finite set of bounded integer intervals, Iy = {[i1, j1], [i2, 32, -, [im, Jm]} with m < n,
such that VI € Iy, Vk € I,ar = x. Here, x denotes an unknown element (state) in the
trace o.

Formally, a transient loss is a finite loss of a sequence of events in an execution trace
such that the loss is not permanent, and it is guaranteed that the observer can observe
subsequent events in the trace. In the rest of the thesis, we assume that the alphabet
is augmented with the unknown state y, i.e, ¥ = X U x. Our further findings consider
aforementioned considerations about the model.

6.2 Formal Problem Description

Given a program P and an LTL formula [65] ¢, our goal is to identify whether ¢ can be
soundly monitored at run time in presence of a transient loss of a sequence of events.
In general, the verdict of a monitor is unknown for the part of an execution trace which
cannot be observed. So, it entails that the system recovers from the transient loss, and the
monitor is able to observe subsequent events in the trace. By soundness, we mean that in
case it is possible to recover the events lost due to transient loss, the truth-value output by
a monitor on a lossy trace would align with the truth-value of a monitor, which processes
the corresponding complete execution trace. We note that when a monitor processes a
lossy execution trace, it cannot produce a verdict for a prefix of the trace, when the prefix
ends with the unknown part of the trace.

Monitoring some properties, such as O (request — { response), in presence of a tran-
sient loss requires that the part of the execution trace, which is observed after the end
of the loss, exhibits certain conditions. Such conditions require that after the loss, the
subsequent part of the trace contains at least one input element, which belongs to X\ x.
We formalize this using the concept of loss-tolerant alphabet, which is defined as follows:

Definition 8 (Loss-tolerant alphabet). A loss-tolerant alphabet, Y._, is a non-empty subset
of B\ x-

Similarly, to monitor properties such as p — ¢ (¢ Ur) in presence of a transient loss,
it is required that the state of the monitor, prior to the beginning of the loss, belongs to a
pre-identified sub-set of states. We illustrate this using the concept of loss-tolerant cluster,
which is defined as follows:

63

Definition 9 (Loss-tolerant Cluster). A loss-tolerant cluster is a non-empty set denoted
by Qs, which is a subset of Q, the set of all possible states of an RV-LTL monitor as given
in Definition 0.

Multiple combinations of loss-tolerant clusters and loss-tolerant alphabets may exist
for an LrL formula. Further, there is a one-to-one relationship between the elements
of loss-tolerant clusters and the elements of loss-tolerant alphabets for an LTL formula.
During our experiments on the commonly used patterns [29] of LTL formulas, we found
that the number of such combinations are few. Consequently, the constructed monitors
incur minimal extra-overhead as later demonstrated by our empirical evaluation of the
proposed method.

In later sections, we argue and prove that an execution-trace o can be monitored in
presence of transient loss iff the state of the monitor immediately before the beginning of a
transient loss belongs to one of the loss-tolerant clusters, and after the end of the transient
loss, the subsequent execution trace contains at least one input element, s, such that s
belongs to the corresponding ¥ _. Although it may appear that the monitorability of an
Lrr formula strictly depends upon run-time conditions, our experiments show that some
formulas can be monitored irrespective of any run-time conditions, because there exists a
single combination of a loss-tolerant cluster and a loss-tolerant alphabet. Further, all the
states of such formulas belong to a loss-tolerant cluster, and the corresponding loss-tolerant
alphabet is equal to ¥\ x. An example of such formulas is OO (a U b).

Formally, our problem can be stated as follows: Given an LTL formula ¢ and an
execution trace o, which exhibits a transient-loss of events, our goal is to

e Decide whether ¢ can be soundly monitored on o.

e If yes, then construct a loss-tolerant monitor M¥ for the formula ¢ such that

o = SO]RV = M6(qo,0))

e Identify the set of possible loss-tolerant clusters and corresponding loss-tolerant al-
phabets of ¢. Elements of such sets are tuples, with each tuple being of the form
(Qs,2_), where) is a loss-tolerant cluster, and ¥ _ is the corresponding loss-tolerant
alphabet.

64

6.3 Monitorability of LTL formula under Transient Loss
of Events

This section uses few examples to provide basic details about the criteria that identifies
whether an LTL formula can be monitored in presence of a transient loss. The criteria is
elaborated using the concepts of loss-tolerant alphabet and loss-tolerant cluster.

6.3.1 Motivating Examples

As per our model, a monitor M, which is an FSM, consumes an element of set >, which is
obtained from the Observer, O, and the monitor produces an output in the truth-domain
B; ={T,T,,7,1,, L}, which is defined by a function X : — Bjs, where @ is the set of
states of the monitor.

The formulas in the obligation [18] class can be satisfied or violated over a finite prefix
of the execution trace. Under a transient loss, the monitor may not be able to observe
some events in such finite prefix. Thus, as per our model, the formulas in the obligation
class cannot be generally monitored unless a recovery of the lost events is possible. For
example, for a safety formula, a transient loss may cause a monitor to miss an event, which
causes a violation of the property, but the monitor cannot report a violation unless the
lost event is recovered. Similar can be argued for a guarantee formula. However, in some
trivial cases, the satisfaction or violation status of formulas in the obligation class can be
determined in spite of a transient loss of the execution trace. For example, let us consider
an LTL formula ¢, = Op, where p is an atomic proposition. If ¢, is already violated by a
finite prefix of the execution trace, then a transient loss of subsequent trace will not change
the verdict.

Further, the satisfaction or violation of certain LTL formulas cannot be determined
with a finite prefix of an execution trace. For example, let v = p — OO (¢Ur) be
an LTL formula. Here, p, ¢ and r are atomic propositions. An RV-LTL [13] monitor for
this formula is as shown in Figure 6.2. Once the monitor is in state ¢; or g2, the monitor
can never deliver its verdict as T or L, because it can never be satisfied or violated
by a finite word. However, as per the definition of monitorability [31], this formula is
monitorable using RV-LTL semantics, because the verdict of an RV-LTL monitor for this
formula differs for good and bad traces. In this case, the monitor delivers a verdict as T,
i.e., ‘presumably satisfied’, when a finite word ends with an element in which proposition r
is true. Otherwise, its verdict is L, i.e., ‘presumably violated’. This monitor can perform
monitoring in a sound manner in presence of a transient loss, because even though the

65

0, (a):(x),(arr

(r),(pAr),(qAr)

(pAr),(PAgAT)

(p),(PAa)

Figure 6.2: RV-LTL Monitor for ¢ = p — OO0 (¢ Ur)

current state of the monitor is unknown, the monitor can still provide a correct verdict
for the next element in the trace provided its state immediately before the beginning of
the transient loss is either ¢; or ¢o. Thus, for this formula, the set of loss-tolerant clusters
consists of a single cluster Qs = {qi1, g2} and the loss-tolerant alphabet ¥_ = 3. The
states in (), upon receiving an identical element from > _ as the input yield a transition
to the same next state. Although the previous state of the monitor is unknown due to
a transient loss, the monitor can reach a correct next state. Until the interruption in
observing the events is over, an RV-LTL monitor’s verdict is unknown for the formula s,
because the input element or the current state of the monitor is unknown. However, once
the monitor observes the subsequent events, it can determine a verdict, which is same as
that of the monitor, which processes the complete execution trace.

We now consider another formula @3 = O(p — ¢ ¢), whose RV-LTL monitor is as
shown in Figure 6.3. This monitor can deliver a sound verdict for an execution trace with
transient loss provided the part of the trace that is observed after the end of the loss,
contains at least one input element o;|0; € {p, q, p A q}. Here, the loss-tolerant alphabet
is ¥_ = {p, ¢, pAq}. The loss-tolerant alphabet, for instance, does not include the subset
{=p A —q}. The existence of at least one element in ¥_ ensures that the next state of the
monitor can be precisely determined.

66

Figure 6.3: RV-LTL Monitor for o3 =0 (p — ¢ q)

6.3.2 Formal Definition

Here, we formally define the monitorability criteria. Let ¢ be an L'TL formula, and let M =
(32, @, qo, 9, \) be the corresponding RV-LTL monitor for ¢ as described in Definition 6.
Let 0 € ¥* denote a finite trace, which exhibits a transient loss. Let), be a set of states
of M such that Qs C Q. Let Q¢ be the set of final states of the monitor.

Definition 10 (Monitorability with Transient Loss). A formula ¢ can be monitored in
presence of a transient loss iff:

I8_.3Q,.Ya € S.Y(gi,q)| 4 € Qs A ¢5 € Q..
(e 32) = (6(gi, @) = (g5,) A

((0(gi) € Q) A (0(g5,0) € Q)

Mo(gi, @) & Qr) A (0(g5,0) & Qy))

The loss-tolerant cluster, (s, allows sound monitoring in presence of a transient loss of
a sequence of events due to certain conditions on the transition function of the states in Q).
These conditions ensure that although the monitor cannot make a transition during the
period of the transient loss, it can still reach a state, when it observes the subsequent events,
and this state is same as that of the corresponding RV-LTL monitor, which processes the
execution trace without a loss.

All the states in a loss-tolerant cluster make transitions to the same next state within
the same loss-tolerant cluster, when the states process an identical input element in X_.
Moreover, if a loss happens when the then current state of the monitor belongs to a loss-
tolerant cluster, then the monitor cannot observe the events, and its state during such loss

67

is unknown. However, the transitions of the loss-tolerant cluster ensure that the ‘unknown’
state would still be one of the states in the same loss-tolerant cluster. Once the interruption
in the observation of events is over, the monitor can process the subsequent events, and it
is ensured that the monitor can precisely determine its current state iff it can observe and
process at least one element in > _.

For some LTL formulas, it may be the case that there exists a single combination of a
loss-tolerant cluster and the corresponding loss-tolerant alphabet such that Qs = @, and
Y_ =%\ y, ie., the loss-tolerant cluster is equal to the set of all the states of the RV-LTL
monitor, and the loss-tolerant alphabet is ¥\ x, the alphabet used by the RV-LTL monitor.
O0(aUb) is a formula, which exhibits the aforementioned conditions.

68

Chapter 7

Monitoring Lossy Traces

This chapter describes our monitor construction method and an algorithm to construct
a loss-tolerant monitor, when the supplied LTL formula is determined to be monitorable
in presence of a transient loss. Additionally, we provide a proof of correctness for the
monitors constructed using our algorithm. Further, we provide the details of performance
evaluation of our monitor construction algorithm.

7.1 Synthesis of Loss-tolerant Monitors

Algorithm 1 describes a process to find whether an LTL formula ¢ is monitorable in presence
of a transient loss of events. FINDMONITORABLITY is the main procedure, which takes an
LtL formula ¢ as input. If ¢ is monitorable, then it outputs T. Otherwise, it outputs L.
If ¢ is found to be monitorable in presence of a transient loss of events, then the procedure
also synthesizes a loss-tolerant monitor. Otherwise, it returns the corresponding RV-LTL
monitor.

As shown at Line 3, FINDMONITORABLITY constructs an RV-LTL monitor M¥ for ¢
using the method described by Bauer et al. [13]. From Line 4 to Line 17, it checks M¥ for
the existence of possible combinations of a loss-tolerant cluster and a loss-tolerant alphabet
that meet the criteria described in Definition 10. These combinations are stored in a list
in the ascending order of the size of the loss-tolerant cluster at Line 14. All potential
loss-tolerant clusters containing at least two states are verified. The reason being that the
loss-tolerant clusters, which contain a single state and meet the criteria in Definition 10 are
not important, because such subsets only contain the final states of an RV-LTL monitor.

69

() @

(a) (b),(anb)

start H ()(b),(aAb)

Figure 7.1: RV-LTL Monitor for ¢ = O(a — { b)

The second half of the algorithm, starting at Line 18, processes the list generated at
Line 14. If at least one combination of a loss-tolerant cluster and corresponding loss-
tolerant alphabet satisfies the criteria of Definition 10 is found at Line 11, then ¢ may be
monitored in presence of a transient loss of a sequence of events. In such case, the function
ADDUNKNOWNSTATETOCLUSTER is called at Line 19 to synthesize a loss-tolerant monitor
by augmenting M¢¥ with new states and transitions. For each combination, if a transition
to one of the states in the corresponding loss-tolerant cluster is not defined for input Yy,
then a new state is created with output as ‘?’. The states in the loss-tolerant cluster then
perform a transition to the newly added state, when the input is y. Further, for each input
element in the corresponding loss-tolerant alphabet, the new state makes transitions to
one of the states in the loss-tolerant cluster. Also, for each of the input element, which
does not belong to the loss-tolerant alphabet, the new state performs a transition to itself.
FINDMONITORABLITY connects all other non-final states that are not in the list of loss-
tolerant clusters, identified at Line 14, to a common unknown state as seen at Line 21.

To further understand Algorithm 1, let us consider the example LTL formula ¢ =
O(a — O b) and its two-state monitor, i.e., @ = {qo, ¢1}, shown in Figure 7.1. The proce-
dure FINDMONITORABLITY identifies the tuple ({qo, ¢1, }, {a A b, a, b}) as the only com-
bination of a loss-tolerant cluster and the corresponding loss-tolerant alphabet that meets
the required criteria in Definition 10. The procedure ADDUNKNOWNSTATETOCLUSTER
adds a new state labeled as ‘unknown’ to the identified loss-tolerant cluster. This new
state has the output symbol as ‘?” denoting that its verdict is unknown. For every state
in cluster {qo, ¢1}, a new transition is added for the input symbol x, and such transitions
yield the new state. The transitions of the new state for all input symbols in ¥_ are same

70

b),(aAb
0.0anny D) O0a)

Figure 7.2: Loss-tolerant Monitor for ¢ = O(a — O b)

as that of any of the states in the cluster. For every input element, which does not belong
to X_ but belongs to ¥, a new transition is added for the new state such that it yields the
new state itself. The loss-tolerant RV-LTL monitor for ¢ is as shown in Figure 7.2.

As discussed by Bauer et al. [13], the computation time of the procedure SYNTHESIZ-
ERVLTLMONITOR is exponential w.r.t. the size of the LTL formula. If we consider the size
of the alphabet ¥ to be m and the number of states in a RV-LTL monitor M% to be n,
then the complexity of the function MEETSMONITORABILITY is O(m X n). Similarly, the
complexity of ADDUNKNOWNSTATETOCLUSTER is O(m + n). Thus, the worst-case time
complexity of the inner section of Algorithm 1, i.e, from Line 8 to Line 17, is O(m xn x 2").
Therefore, the time complexity of Algorithm 1 for synthesizing a loss-tolerant monitor is
exponential w.r.t. the number of states of the RV-LTL monitor. Since the loss-tolerant
monitor is synthesized offline, this complexity is not as critical as the runtime complexity.

For RV, the additional overhead in terms of memory and CPU consumption at run time
needs to be reduced. The number of states in the monitor is an important parameter as
the states and their transitions consume memory at run time. The number of new states
that can be added to the RV-LTL monitor is always bounded by n. Therefore, the size
of the synthesized loss-tolerant monitor M?¥ is also in O(2%), where p is the size of the
formula ¢. Thus, the complexity for the size of loss-tolerant monitor is identical to that of
the RV-LTL monitor [13].

71

Algorithm 1 Part 1 of Procedure to Verify Monitorability and Synthesize a Loss-tolerant
Monitor for an LTL formula, ¢

Input: ¢
Output: (isMonitorable, M¥) > isMonitorable indicates whether ¢ is monitorable, If ¢

1: procedure FINDMONITORABLITY (¢)
> Find whether ¢ is monitorable in presence of a transient loss of events

N DN DN DD DNDNDNDNNDNRE = = = = = = = = =

30:

1sMonitorable < L
M? < SYNTHESIZERVLTLMONITOR(¢p)
n < FINDNOOFSTATES(M?¥)
if n <1 then
return (isMonitorable, M¥)
end if
for i + 2, n do
for j « (’Z), 1 do
Qs < next-cluster of size i of states of M?¥
(ms,>_) <~ MEETSMONITORABILITY (Q);)
if ms # L then
tsMonitorable <— T
clusterList <~ ADDCLUSTERTOLIST(Qs, X_)
end if
end for
end for
for each (Qs,>_) € clusterList do
ADDUNKNOWNSTATETOCLUSTER(Qs,)
end for
Create a new chiState such that \(chiState) = ‘7
for ¢ |VQs € clusterList - getClusters() - ¢ ¢ Qs do
if ¢ is not a final state then
d(q, x) = chiState
end if
end for
for each f € X Uy do
d(chiState,) = chiState
end for
return (isMonitorable, M¥?)

31: end procedure

> @ is an LTL formula

is monitorable, then M¥ is loss-tolerant monitor. Otherwise, it’s a RV-LTL Monitor

> Procedure in [13]

72

Algorithm 2 Part 2 of Procedure to Verify Monitorability and Synthesize a Loss-tolerant
Monitor for an LTL formula, ¢

32: procedure ADDUNKNOWNSTATETOCLUSTER(Qs, %) > Add ‘unknown’ state to a
loss-tolerant cluster

33: Create a new chiState such that \(chiState) = ‘7

34: Set ¢ = any state s such that s € Q)

35: for each f € >_ do

36: Set d(chiState, B) = d(q, B)

37: end for

38: for each ¢ € QU chiState do

39: if 0(q, x) undefined then

40: Set d(q, x) = chiState

41: end if

42: end for

43: foreach f ¢ ¥ _ApB € XUx do
44: Set d(chiState, B) = chiState
45: end for

46: end procedure

47: procedure MEETSMONITORABILITY (Q;)

48: if (@ satisfies Definition 10) then > This check is performed using elements of
¥\ x because x is not a part of the alphabet for the RV-LTL monitor

49: Find ¥_ for @

50: return (T,%_)
51: else

52: return (L, null)
53: end if

54: end procedure

73

7.1.1 Correctness of Loss-tolerant Monitors

A loss-tolerant RV-LTL monitor M% for an LTL formula ¢ operates on a trace o, which
is identical to the trace processed by the original monitor, with the exception that all the
input elements in a bounded interval are unknown. We denote the value of such elements
by x. We also refer to such bounded interval as lossy interval. As stated by Lemma 1, the
proof shows that when a loss-tolerant RV-LTL monitor processes an execution trace, which
is same as that of the trace processed by RV-LTL monitor except for the lossy interval,
the verdict produced by the loss-tolerant RV-LTL monitor is equal to that of the RV-LTL
monitor provided that certain conditions are satisfied. These conditions are described in
the following lemma.

Lemma 1 (Conditional Equality of Verdicts). Let M¥ = (X\ x, @, qo,9, \) be an RV-LTL
monitor for the formula ¢ to process a trace o; = ay,as, ..., a, and M'? = (3,Q’, ¢}, 0", \')
be the corresponding loss-tolerant RV-LTL monitor to process a trace oj = by, by, ..., by.
AT =iy, j1] st. Yk (a = b)) V (in <k < ji ANb, = x) A (j1 < n). The verdict of M'?
is conditionally equal to M¥ iff: I(Qs,X_) - Im € (51, n]-VEk € [1,n] (((bi, = XA q;,_1 €
Qs) N (b, € X)) <= (E=>mVEk <i)) NAS(qr-1,ax)) = N((q)_1,bk))) V (i1 <k <
m AN (q_1,b6)) = 7)), where (Qs,X_) is one of the combinations of a loss-tolerant
cluster and the corresponding loss-tolerant alphabet identified by Algorithm 1.

Proof. We prove the first part of Lemma 1. The first part is stated as 3(Q,, X_) - Im €
(1, n] - Vk € [Ln](((bi, = XA ¢,y € Q) A (b € X)) — ((k = mVE <iy) A
A(0(qr—1,ax)) = N (' (qhe—1, b)) V (ix <k <m AN (8 (g, b)) = 7))

Firstly, let us assume that the input element being processed by M’# at the beginning
of the lossy interval is x, and M’?’s corresponding state belongs to one of the loss-tolerant
clusters identified by Algorithm 1, and one of the input elements, b,,, processed by the
monitor after the lossy interval belongs to the corresponding loss-tolerant alphabet.

If the current input element is x and M'#’s state at the beginning of the lossy interval
belongs to a loss-tolerant cluster added by Algorithm 1, then the next state of M'# is one
of the new state with output as ‘?’. This new state is earlier added to the loss-tolerant RV-
LTL monitor by Algorithm 1 during construction of the loss-tolerant monitor by procedure
ADDUNKNOWNSTATETOCLUSTER. The post-conditions of this procedure ensure that for
all states in the corresponding loss-tolerant cluster, an input y yield a transition to a state
with output as ‘?’. Further, M'® remains in this state until it can process an element,
b, € %_. Hence, its output remains ‘7" when i; < k < m.

Further, when M'# observes b, after the end of the lossy interval, it performs a tran-
sition to a state, which is equal as that of M% corresponding state as per the transition

74

function defined by procedure ADDUNKNOWNSTATETOCLUSTER at Line 35. The post-
conditions of procedures MEETSMONITORABILITY and ADDUNKNOWNSTATETOCLUS-
TER ensure that such equality between the states of M¥ and M'% exists. Thus, for k& > m,
M'#’s output remains equal to that of M¥. Further, when k < iy, i.e., before the beginning
of the lossy interval, the output of M’¥ is same as that of M¥ as both perform identical
transitions with identical input symbols. Hence, the first part of the lemma is proved by
our findings in this and previous paragraph.

We also prove the second part of Lemma 1. The second part is stated as 3(Qs, X_)-Im €
(1, n] -Vk € [L,n] (K > mVEk < 1) ANANO(ge—1,ax)) = N('(q_1,bk))) V (11 < k <
m AN(6(qp_y, b)) = 7)) = ((biy = XA ¢, 1 € Qs) A (b € X))

So, let us assume the output symbol of M'? is equal to that of M?¥, when k < i;Vk > m
and M'?’s output is ‘?’, when i; < k < m.

As the output of M'# is ‘7" for iy < k < m and otherwise equal to that of M¥ it is
evident that b;_; = x as per the construction of monitor by Algorithm 1 where an unknown
state has its output function as ‘?’. So, the lossy interval begins at i — 1 because the output
of M'¥ is ‘?’ starting at index i,. Further, as the output of M’? and M¥ is equal for m!"
element of the trace, b,, must belong to one of the loss-tolerant alphabet, and the state of
M'# before processing i, element must belong to the corresponding loss-tolerant cluster.
Unless the state of M’ before processing i element belongs to the loss-tolerant cluster,
M'# cannot produce an output which is equal to that of M¥ upon processing the input
element b,,, which belongs to the loss-tolerant alphabet. Thus, the second part of the
lemma is proved as well. O

Further, we provide proof of correctness for loss-tolerant RV-LTL monitors constructed
using Algorithm 1.

Theorem 1 (Correctness of M'?). Let ¢ be an LTL formula, and M'¥ be the loss-tolerant
RV-LTL monitor constructed using Algorithm 1. For all o € ¥*, if o exhibits a transient
loss of events as per Definition 7, and a run of M'? on o satisfies (1) the state of the
monitor immediately before the beginning of a lossy interval belongs to one of the loss-
tolerant clusters and (2) the subsequent trace after the end of the lossy-interval contains at
least one element from the corresponding loss-tolerant alphabet, then the following holds

AMd(qp,0)) = [0 | @lry

75

Proof. Bauer et al. have provided the proof of correctness for LTLs [11] and RV-LTL [13]
monitors. Our proof directly follows from Lemma 1, Definition 7 and the proofs provided
by Bauer et al. O]

In case of runtime verification of an incomplete trace, it is important that the verdict
of the monitor cannot be invalidated upon the recovery of the lost events in the trace. To
express this idea, we define monotonicity of loss-tolerant monitors w.r.t. events lost in
the past. We note that the we only consider the events that are lost in the past. Thus,
the verdict of a monitor may change when events are appended to a finite trace. Indeed,
monotonicity allows that the verdict of the monitor does not depend upon the recovery
of lost events. In general, a recovery of lost events may not be possible for real-world
applications.

Definition 11 (Monotonicity w.r.t. past events). A monitor M% is monotonic iff its
verdict on a finite word exhibiting loss cannot be invalidated by the recovery of the lost
events in the finite word.

Corollary 1. A loss-tolerant monitor constructed using Algorithm 1 is monotonic.

Proof. This proof trivially follows from that of Theorem 1 and Lemma 1. m

7.1.2 Performance

We measured the performance of Algorithm 1 on the commonly used patterns of LTL
formulas identified in [11, 29]. A total of 42 formulas were identified as monitorable from
the 97 LTL formulas. Figure 7.3 compares the number of states for the RV-LTL monitors
and corresponding loss-tolerant monitors. It shows that the additional overhead incurred
by the loss-tolerant monitor is not significant.For a loss-tolerant monitor, this number of
states represents only an increase of at most two from that of the corresponding RV-LTL
monitor. Similarly, Figure 7.4 compares the number of transitions between the monitors.
The number of transitions depends upon the number of states and the size of the alphabet.
The number of transitions depicts the additional overhead in terms of memory at run time.
We observe a minimum of 5 and a maximum of 534 extra transitions w.r.t the number of
transitions in the RV-LTL monitors.

76

Number of States in the Monitor

O=MNWLUIONOOO=NWAOIOON0O

I e e e

The 42 monitorable LTL specification patterns

Figure 7.3: Comparison of the No. of States

7

6000
5000
4000
3000

r

N
o
o
o

1000

100
80

Size of the Monito

60
40
20

M Size of RV-LTL Monitor s
Size of Loss-tolerant Monitor ——3

il 1l Zﬂoﬂﬂﬂ ccactallitital

30
The 42 monitorable LTL specification patterns

Figure 7.4: Comparison of the No. of Transitions

78

Ll

Chapter 8

Case-studies for Loss-tolerant
Monitoring

In this chapter, we present two case studies depicting various results about our appproach.
We evaluated our approach for monitoring MPlayer version 1.1.4.8 [62], which is a cross-
platform media player application, and Google cluster-usage traces [09, 78]. For the experi-
ments, we used a single eight core machine equipped with the Intel i7-3820 CPU at 3.60GHz
and 31.4Gb of RAM. The machine runs Ubuntu 14.04 LTS 64 bit. We implemented our
loss-tolerant monitors in Java using RV-LTL monitors generated using LamaConv [71].

8.1 MPlayer

Our goal here is to perform online monitoring while MPlayer plays a high definition, 29.97
fps, 720x480, 1 Mbps bitrate video. We evaluate the following LTL properties.

Property 1: ¢, :: Oplay — O (buffer — $decode). This property saids that whenever
MPlayer plays a file, a buffer action is always followed by an eventual decode action.
Property 2: ¢y :: O(play — O(audio V (video A subtitle) V pause)). this expresses that
when MPlayer plays a file, it may be an audio file or a video with subtitle or just paused.

8.1.1 Settings

We use DIME [3], which is a flexible time-aware dynamic binary instrumention tool as
the observer. DIME uses a rate-based resource allocation method to periodically extract

79

information from a program while still preserving its timing constraints. To achieve this,
DIME limits the instrumentation time to a predefined budget B during each period of T’
time units. The instrumentation is then performed for no more than B time units per
period T'. The instrumentation budget is reset to the full at the beginning of each new
period. When the budget is fully consumed, the instrumentation is disabled and re-enabled
again only at the next period when the reset happens. Thus, it might be impossible for
DIME to instrument at all code locations, causing incomplete logging or loss of events.
DIME is implemented on top of Pin [51], a cross-platform dynamic binary instrumentation
framework. Unlike DIME, Pin always instruments all code locations, providing a trace
without any loss of events. Naturally, we used Pin to generate a complete trace.

We instrumented MPlayer with both DIME and Pin to respectively generate lossy traces
and complete traces. DIME is extended to output a y character when instrumentation is
disabled. DIME can compress a set of consecutive y characters into a single character. This
compression also helps to counter the overhead of runtime verification. DIME collects and
sends data to the monitor using a named pipe for online monitoring.

8.1.2 Results

We instrumented MPlayer with both DIME and Pin to track function calls related to
Property 1 and Property 2. We varied the budget of DIME by 10 from 10% to 100% and
repeated each experiments five times. The instrumentation period is fixed to 1 second.
The monitors can buffer up to 100 events before processing them. Figure 8.1 shows that
the output of the loss-tolerant monitor matches that of the RV-LTL monitor except the x
symbol. This figure plots a portion of the truth-values generated by the monitors for the
trace obtained from the first run of DIME with 10% budget and Pin. The x-axis represents
the index of each symbol in the sequence of input events, the y-axis, the truth values. For
example, the verdict of the synthesized monitor for the 55 input symbol is '?” while
that of the RV-LTL monitor is T p, suggesting that the input was a y. Figure 8.1 also
shows that compression is disabled on the loss symbol to demonstrate the soundness of
our monitoring algorithm. The final verdicts of the loss-tolerant monitor and that of the
RV-LTL monitor are T, for the described properties.

Further, we analyzed the monitoring overhead of each monitor. We turned on compres-
sion on the synthesized RV-LTL that treats a sequence of y symbols as a single input and
consequently produces only a single output. Figure 8.2 compares the average execution
times of the two monitors for each property. The instrumentation budget appears on the
x-axis and the total monitoring time on the y-axis. Figure 8.2a and Figure 8.2b both agree

30

Truth Values

Monitor with C(I)mplete Trace
Monitor with Lossy Trace ———
Tp b
? -
Lp
J_ 1 1 1 1 1

45 50 55 60
Sequence of Input Events

Figure 8.1: Comparison of Verdicts

81

65

Monitoring Time (secs)

Monitoring Time (secs)

1.6

1.4

1.2

0.8

0.6

0.4

0.2

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Monitor with Lo'ssy Trace ——
Monitor with Complete Trace ——+—

4
+

—F
L —F— |
—E 1
10 20 30 40 50 60 70 80 90 100 110
Budget (%) per Period
(a) Property 1
Monitor with Lossy Trace C——— i
Monitor with Complete Trace ——+—
R o 2 I I |
—E Ea B
=y
10 20 30 40 50 60 70 80 90 100 110

Budget (%) per Period
(b) Property 2

Figure 8.2: Monitoring Overhead

82

80000 T T T T T T T T T T 2000
Events —x—
96% Frames —X— i
70000 - 1800
1 1600
60000 | 80%
1 1400
wn
o 20000 F 1 1200 £
= g
Q LC
o 40000 11000 -
[g
3 {80 8
30000 | £
1 600
20000 |
1 400
10000 1 200
O 1 1 1 1 1 1 1 1 1 1 0

0O 10 20 30 40 50 60 70 80 90 100 110
Budget (%) per Period

Figure 8.3: Dropped Frames vs Lost Events

on the fact the it is always more expensive to monitor a complete trace than to monitor
an execution trace with transient loss. We can observe that the total monitoring overhead
slightly increases with the instrumentation budget. Figure 8.2 shows that Property 1 and
Property 2 can be soundly monitored even with a minimal instrumentation of 10% per
second. Thus, for loss-tolerant LTL properties, one can decide to trade-off instrumentation
overhead and throughput by skipping some events with the guarantee that the properties
will be soundly monitored still.

To verify this assertion, we compare the number of lost events to the number of video
frames dropped by the MPlayer. Figure 8.3 shows the results for Property 1. The x-axis
represents the instrumentation budget per period of 1 second. The total number of lost
events appears of the left y-axis, while the right y-axis represents the number of dropped
frames. The numbers shown in Figure 8.3 represents the percentage of lost events w.r.t. the
total number of processed events. We observe that the number of dropped frames increases
with the instrumentation budget, while on the contrary, the number of lost events decreases
as the instrumentation budget increases. With the budget at 80% for example, the number

83

of lost events is around 60% with 1000 frames dropped. When the budget is at 100%, DIME
still generate about 47% of loss in the execution trace. This is due to the rate-based budget
allocation policy that forces DIME to always disable instrumentation once the budget is
consumed, and to re-enable it only when the budget is replenished. As we increase the
budget, more frames are dropped and the video becomes more and more sluggish as with
Pin that may drop up to 3000 frames to generate a complete trace. Figure 8.3 suggests
that for a smooth video experience, it is preferable to monitor while instrumenting with a
budget of 10% per second.

8.2 Google Cluster-usage Traces

A Google cluster is a set of machines, packed into racks, and connected by a high-bandwidth

cluster network [09, 78]. Work is performed on the cluster in the form of jobs, each
comprising one or more tasks. Tasks and jobs are scheduled onto different machines. The
ClusterData2011-2 [69, 78] used in this thesis, provides data from an 12.5k-machine cell

over about a month-long period in May 2011. Data in the trace is derived from monitoring
data, collected by periodic remote procedure calls. Therefore, when the monitoring system
or cluster gets overloaded, data may not be collected. However, when an event record
is missing in the trace, a replacement is synthesized with a note marking the details as
‘missing information’ [69, 78].

Each task progresses through different states such as ‘submitted’, ‘scheduled’, ‘failed’,
‘evicted” and ‘killed’. This data is lossy because some of such states for some jobs and their
tasks are not captured due to unknown reasons. We extracted 7,170, 572 events for 16, 467
tasks for which some information about certain events is missing or incomplete. Following
properties were monitored for verification of the state transitions of these tasks.
Property 1: O((fail V kill V evict) — O(submit — Ofinish)). This states that whenever
a task fails or is killed or is evicted, it is always re-submitted, and eventually finishes.
Property 2: O(evict — Qsubmit). Means that whenever a task is evicted, it is eventually
re-submitted.

Property 3: O(schedule — O(finish V fail V kill V evict)). This states that whenever a
task is scheduled, it will eventually finish, fail, get killed or evicted.

Property 4: O(update_pending — {schedule). This states that whenever a task is up-
dated at runtime before been scheduled, it is eventually scheduled for execution.
Property 5: O(submit — Ofinish). This states that whenever a task is submitted, it
eventually gets finished.

The monitoring results for the above properties appears in Table 8.1. We report the

84

Prop. Monitored | Skipped Verdict
Tasks Tasks Tp 1,
1 10,847 5,620 | 3,572 | 7,275
2 10,892 5,575 | 10,891 1
3 10,892 5,575 | 6,240 | 4,652
4 16,467 0| 16,461 6
5 10,892 5,575 | 2,876 | 8,016

Table 8.1: Verification of Google Cluster Data

number of tasks that were monitored. Some of the tasks were not monitorable because
the respective traces did not match the criteria for monitorability. This criteria varies for
the respective properties. For Property 1 for example, the loss-tolerant monitor delivered
verdict as T, for 5,620 tasks and L, for 3,572 out of the 10,847 of tasks processed. A
total of 5,620 tasks were skipped because the traces did not satisfy the monitorability
criteria for the property. For Property 2, the results show that most of the tasks, which

are evicted, get resubmitted.

These results reveal that many of the tasks with incomplete traces do not successfully
finish. Figure 8.4 shows that the average overhead caused by the loss-tolerant monitors for

respective properties is not significant.

85

Monitoring Time (secs)

1 2 3 4 5
Properties

Figure 8.4: Monitoring Overhead of Google Traces

86

Chapter 9

Future Work and Conclusion

9.1 Future Work

In future, we plan to extend RitHM by adding plugins for executing monitoring algorithms
on FPGAs. FPGAs offer a way of implementing parallel algorithms. We plan to develop
monitor generators, which synthesize monitoring code in different programming languages.
Further, we intend to come up with a web repository of different types of specifications
with efficient mining and matching functions in order to develop a database of commonly
used specification patterns. We believe that such repository can assist in the development
of specification mining algorithms, which primarily rely on traces.

We also plan to extend RitHM with additional overhead control schemes based on
power-efficient algorithms for monitor invocation. Further, we would like to develop ad-
ditional RitHM plugins for monitoring using JMX, which is a widely used technology for
monitoring large-scale enterprise Java applications. We plan to integrate monitoring al-
gorithms for verification of distributed systems, which exhibit several additional problems
related to out-of-order delivery of messages and lossy channels for inter-process communi-
cation.

For the problem of monitoring lossy traces, we plan to evaluate our monitoring method
for distributed systems that may often produce incomplete and lossy traces. We also
plan to extend our approach for mining specifications using incomplete traces as well as
for monitoring variants of first-order temporal logic. Additionally, we plan to adapt our
approach for different models of lossy traces such as lossy traces with a bound on the
maximum number of lost events. We plan to evaluate our approach for such models,

87

which depict different real-world applications which produce lossy traces under different
constraints on the loss.

9.2 Conclusion

We presented RitHM, a comprehensive framework for scalable and efficient runtime veri-
fication of software. RitHM’s design is motivated by state-of-the-art research on runtime
verification, and it is extensible due to RitHM’s support for plugins. RitHM exhibits sev-
eral design features in order to support efficient monitoring by using different back-ends
and parallel verification algorithms. Additionally, RitHM supports plugins for front-ends
in order to allow flexibility in choosing a suitable logical formalism for describing the cor-
rectness criteria. RitHM also supports interoperability between different implementations
of monitoring algorithms, and this feature provides significant reduction in the resource
utilization of monitors. Further, we evaluated RitHM’s architecture and architectures of a
few more tools using ATAM. The evaluation highlights the importance of various unique
features of RitHM’s architecture. Our empirical evaluation also confirms the importance
of the aforementioned design features to achieve the goals namely modifiability, efficiency,
usability and portability.

We also investigated the problem of runtime verification of LTL in presence of transient
loss of events. We introduced the concept of monotonicity and identified a fragment of
LrtL that can be soundly monitored in the presence of such a loss. Based on this, we
presented an offline algorithm which identifies whether a given LTL formula is monitorable
in presence of a transient loss, and constructs the corresponding loss-tolerant monitor. We
analyzed the complexity of the algorithm and also evaluated it against commonly used
patterns of LTL formulas to show that the synthesized monitor incur minimal additional
overhead in terms of number states and transitions. Further, we evaluated the algorithm
on the traces of two real-world systems to show the effectiveness and applicability of our
approach. The evaluation also suggests that for LTL formulas that are monitorable in
presence of transient loss, the monitoring overhead and the throughput of the monitored
program can be traded-off by sacrificing some events with the guarantee that the properties
can still be soundly verified. The evaluation also highlights that our approach increases
the applicability of runtime verification for real-world applications, which often produce
incomplete traces.

38

References

1]

Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendren, Sascha
Kuzins, Ondrej Lhotak, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and
Julian Tibble. Adding Trace Matching with Free Variables to Aspectj. In Ralph E.
Johnson and Richard P. Gabriel, editors, Proceedings of the 20th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, pages 345-364.
ACM, 2005.

Glenn Ammons, Rastislav Bodik, and James R. Larus. Mining Specifications. In
John Launchbury and John C. Mitchell, editors, Conference Record of POPL 2002:
The 29th SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Portland, OR, USA, January 16-18, 2002, pages 4-16. ACM, 2002.

Pansy Arafa, Hany Kashif, and Sebastian Fischmeister. DIME: time-aware Dynamic
Binary Instrumentation using Rate-based Resource Allocation. In Proceedings of
the International Conference on Embedded Software, EMSOFT 2013, Montreal, QC,
Canada, September 29 - Oct. 4, 2013, pages 25:1-25:10. IEEE, 2013.

Matthew Arnold, Martin Vechev, and Eran Yahav. QVM: an efficient runtime for
detecting defects in deployed systems. In ACM Sigplan Notices, volume 43, pages
143-162. ACM, 2008.

Benjamin Barre, Mathieu Klein, Maxime Soucy-Boivin, Pierre-Antoine Ollivier, and
Sylvain Hallé. Mapreduce for Parallel Trace Validation of LTL properties. In Runtime
Verification, Third International Conference, RV 2012, Istanbul, Turkey, September
25-28, 2012, Revised Selected Papers, pages 184-198, 2012.

Howard Barringer, Ylies Falcone, Klaus Havelund, Giles Reger, and David E. Ryde-
heard. Quantified Event Automata: Towards Expressive and Efficient Runtime Mon-
itors. In Dimitra Giannakopoulou and Dominique Méry, editors, FM 2012: Formal

89

[10]

[11]

[12]

[13]

[14]

[15]

Methods - 18th International Symposium, Paris, France, August 27-31, 2012. Pro-
ceedings, volume 7436 of Lecture Notes in Computer Science, pages 68-84. Springer,
2012.

David Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zlinescu. Monitoring
compliance policies over incomplete and disagreeing logs. In Runtime Verification,
pages 151-167. Springer, 2013.

David A. Basin, Matus Harvan, Felix Klaedtke, and Eugen Zalinescu. MONPOLY:
Monitoring Usage-Control Policies. In Khurshid and Sen [19], pages 360-364.

David A. Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zalinescu. Monitoring
of Temporal First-Order Properties with Aggregations. In Axel Legay and Saddek
Bensalem, editors, Runtime Verification - 4th International Conference, RV 20183,
Rennes, France, September 24-27, 2013. Proceedings, volume 8174 of Lecture Notes in
Computer Science, pages 40-58. Springer, 2013.

David A. Basin, Felix Klaedtke, Samuel Miiller, and Eugen Zalinescu. Monitoring
Metric First-Order Temporal Properties. J. ACM, 62(2):15, 2015.

Andreas Bauer, Rajeev Goré, and Alwen Tiu. A First-Order Policy Language for
History-Based Transaction Monitoring. In Martin Leucker and Carroll Morgan, edi-
tors, Theoretical Aspects of Computing - ICTAC 2009, 6th International Colloquium,
Kuala Lumpur, Malaysia, August 16-20, 2009. Proceedings, volume 5684 of Lecture
Notes in Computer Science, pages 96—-111. Springer, 20009.

Andreas Bauer, Martin Leucker, and Christian Schallhart. The good, the bad, and
the ugly, but how ugly is ugly? In Runtime Verification, pages 126-138. Springer,
2007.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing LTL Semantics
for Runtime Verification. J. Log. Comput., 20(3):651-674, 2010.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification
for LTL and TLTL. ACM Transactions on Software Engineering and Methodology
(TOSEM), 20(4):14, 2011.

Shay Berkovich, Borzoo Bonakdarpour, and Sebastian Fischmeister. GPU-based Run-
time Verification. In 27th IEEE International Symposium on Parallel and Distributed
Processing, IPDPS 2013, Cambridge, MA, USA, May 20-24, 2013, pages 1025-1036.
IEEE Computer Society, 2013.

90

[16]

[17]

[18]

[19]

[20]

[21]

22]

[25]

Eric Bodden. J-LO-A tool for runtime-checking temporal assertions. Master’s thesis,
RWTH Aachen university, 2005.

Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister. Time-
triggered runtime verification. Formal Methods in System Design, 43(1):29-60, 2013.

Edward Chang, Zohar Manna, and Amir Pnueli. Characterization of temporal property
classes, pages 474-486. Automata, Languages and Programming. Springer, 1992.

R. N. Charette. Why Software Fails [Software Failure|. IEEE Spectr., 42(9):42-49,
September 2005.

Shigeru Chiba. Load-Time Structural Reflection in Java. In Elisa Bertino, editor,
ECOOP 2000 - Object-Oriented Programming, 14th European Conference, Sophia An-
tipolis and Cannes, France, June 12-16, 2000, Proceedings, volume 1850 of Lecture
Notes in Computer Science, pages 313-336. Springer, 2000.

Edmund M. Clarke, William Klieber, Milos Novacek, and Paolo Zuliani. Model Check-
ing and the State Explosion Problem. In Bertrand Meyer and Martin Nordio, editors,
Tools for Practical Software Verification, LASER, International Summer School 2011,
Elba Island, Italy, Revised Tutorial Lectures, volume 7682 of Lecture Notes in Com-
puter Science, pages 1-30. Springer, 2011.

Christian Colombo, Gordon J. Pace, and Gerardo Schneider. LARVA — safer moni-
toring of real-time java programs (tool paper). In Dang Van Hung and Padmanabhan
Krishnan, editors, Seventh IEEE International Conference on Software Engineering
and Formal Methods, SEFM 2009, Hanoi, Vietnam, 23-27 November 2009, pages
33-37. IEEE Computer Society, 2009.

Douglas Comer. [Internetworking with TCP/IP: Principles, Protocols, and Architec-
ture. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

Ben D’Angelo, Sriram Sankaranarayanan, César Sanchez, Will Robinson, Bernd
Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. LOLA: Runtime
Monitoring of Synchronous Systems. In 12th International Symposium on Temporal
Representation and Reasoning (TIME 2005), 23-25 June 2005, Burlington, Vermont,
USA, pages 166-174. IEEE Computer Society, 2005.

Dipankar Dasgupta and Zbigniew Michalewicz. Fvolutionary Algorithms in Engineer-
ing Applications. Springer, 1997.

91

[26]

[27]

28]

[29]

[34]

Normann Decker, Martin Leucker, and Daniel Thoma. jUnith—Adding Runtime Ver-
ification to jUnit. In Guillaume Brat, Neha Rungta, and Arnaud Venet, editors, NASA
Formal Methods, 5th International Symposium, NFM 2013, Moffett Field, CA, USA,
May 14-16, 2013. Proceedings, volume 7871 of Lecture Notes in Computer Science,
pages 459-464. Springer, 2013.

Alexandre Donzé. Breach, A Toolbox for Verification and Parameter Synthesis of
Hybrid Systems. In Tayssir Touili, Byron Cook, and Paul Jackson, editors, Computer
Aided Verification, 22nd International Conference, CAV 2010, Edinburgh, UK, July
15-19, 2010. Proceedings, volume 6174 of Lecture Notes in Computer Science, pages
167-170. Springer, 2010.

M. Dwyer, G. Avnmin, and J. Corbett. A System of Specification Patterns.
http://patterns.projects.cis.ksu.edu/, 1997.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in Property
Specifications for Finite-State Verification. In Barry W. Boehm, David Garlan, and
Jeft Kramer, editors, Proceedings of the 1999 International Conference on Software
Engineering, ICSE’ 99, Los Angeles, CA, USA, May 16-22, 1999., pages 411-420.
ACM, 1999.

G. Fairhurst and L. Wood. Advice to Link Designers on Link Automatic Repeat
reQuest (ARQ), 2002.

Ylies Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can you verify and

enforce at runtime? International Journal on Software Tools for Technology Transfer,
14(3):349-382, 2012.

Long Fei and Samuel P. Midkiff. Artemis: Practical runtime monitoring of applications
for execution anomalies. ACM SIGPLAN Notices, 41(6):84-95, 2006.

Dov M. Gabbay. The Declarative Past and Imperative Future: Executable Tem-
poral Logic for Interactive Systems. In Behnam Baniegbal, Howard Barringer, and
Amir Pnueli, editors, Temporal Logic in Specification, Altrincham, UK, April 8-10,
1987, Proceedings, volume 398 of Lecture Notes in Computer Science, pages 409—448.
Springer, 1987.

Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and Kirk W.
Cameron. Powerpack: Energy profiling and analysis of high-performance systems and
applications. IEEE Trans. Parallel Distrib. Syst., 21(5):658-671, 2010.

92

[35]

[36]

[37]

Hendra Gunadi and Alwen Tiu. Efficient Runtime Monitoring with Metric Temporal
Logic: A Case Study in the Android Operating System. In Cliff B. Jones, Pekka
Pihlajasaari, and Jun Sun, editors, FM 201/4: Formal Methods - 19th International
Symposium, Singapore, May 12-16, 2014. Proceedings, volume 8442 of Lecture Notes
in Computer Science, pages 296-311. Springer, 2014.

Brent Hailpern and Padmanabhan Santhanam. Software debugging, testing, and ver-
ification. IBM Systems Journal, 41(1):4-12, 2002.

Sylvain Hallé and Roger Villemaire. Runtime Verification for the Web - A Tutorial
Introduction to Interface Contracts in Web Applications. In Howard Barringer, Ylies,
Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg
Sokolsky, and Nikolai Tillmann, editors, Runtime Verification - First International
Conference, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings, volume
6418 of Lecture Notes in Computer Science, pages 106-121. Springer, 2010.

Matthias Hauswirth and Trishul M. Chilimbi. Low-overhead memory leak detection
using adaptive statistical profiling. In ACM Sigplan Notices, volume 39, pages 156—
164. ACM, 2004.

Klaus Havelund and Grigore Rosu. Monitoring Programs Using Rewriting. In 16th
IEEFE International Conference on Automated Software Engineering (ASE 2001), 26-
29 November 2001, Coronado Island, San Diego, CA, USA, pages 135-143. IEEE
Computer Society, 2001.

Klaus Havelund and Grigore Rosu. An Overview of the Runtime Verification Tool
Java PathExplorer. Formal Methods in System Design, 24(2):189-215, 2004.

Klaus Havelund and Grigore Rosu. Efficient Monitoring of Safety Properties. STTT,
6(2):158-173, 2004.

Hsi-Ming Ho, Joél Ouaknine, and James Worrell. Online Monitoring of Metric Tem-
poral Logic. In Borzoo Bonakdarpour and Scott A. Smolka, editors, Runtime Veri-
fication - 5th International Conference, RV 2014, Toronto, ON, Canada, September
22-25, 2014. Proceedings, volume 8734 of Lecture Notes in Computer Science, pages
178-192. Springer, 2014.

Jeff Huang, Cansu Erdogan, Yi Zhang, Brandon M. Moore, Qingzhou Luo, Aravind
Sundaresan, and Grigore Rosu. ROSRV: Runtime Verification for Robots. In Run-
time Verification - 5th International Conference, RV 2014, Toronto, ON, Canada,
September 22-25, 2014. Proceedings, pages 247254, 2014.

93

[44]

[45]

[46]

[47]

Xiaowan Huang, Justin Seyster, Sean Callanan, Ketan Dixit, Radu Grosu, Scott A.
Smolka, Scott D. Stoller, and Erez Zadok. Software monitoring with controllable
overhead. International Journal on Software Tools for Technology Transfer, 14(3):327—
347, 2012.

Yongkai Huo, C. Hellge, T. Wiegand, and L. Hanzo. A Tutorial and Review on
Inter-layer FEC Coded Layered Video Streaming. Communications Surveys Tutorials,
IEEE, 17(2):1166-1207, Secondquarter 2015.

Java Management Extensions (JMX). https://docs.oracle.com/javase/
tutorial/jmx/.
Rick Kazman, Leonard J. Bass, Mike Webb, and Gregory D. Abowd. SAAM: A

Method for Analyzing the Properties of Software Architectures. In Bruno Fadini,
Leon J. Osterweil, and Axel van Lamsweerde, editors, Proceedings of the 16th In-
ternational Conference on Software Engineering, Sorrento, Italy, May 16-21, 1994.,
pages 81-90. IEEE Computer Society / ACM Press, 1994.

Rick Kazman, Rick Kazman, Mark Klein, Mark Klein, Paul Clements, Paul Clements,
Norton L. Compton, and Lt Col. Atam: Method for architecture evaluation, 2000.

Sarfraz Khurshid and Koushik Sen, editors. Runtime Verification - Second Interna-
tional Conference, RV 2011, San Francisco, CA, USA, September 27-30, 2011, Revised
Selected Papers, volume 7186 of Lecture Notes in Computer Science. Springer, 2012.

Linghe Kong, Mingyuan Xia, Xiao-Yang Liu, Guangshuo Chen, Yu Gu, Min-You Wu,
and Xue Liu. Data Loss and Reconstruction in Wireless Sensor Networks. Parallel
and Distributed Systems, IEEE Transactions on, 25(11):2818-2828, Nov 2014.

Chris Lattner and Vikram S. Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In 2nd IEEE / ACM International Symposium
on Code Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose,
CA, USA, pages 75-88. IEEE Computer Society, 2004.

Martin Leucker. Teaching Runtime Verification. In Khurshid and Sen [19], pages
34-48.

LTTng: An Open Source Tracing Framework for Linux. http://lttng.org/.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building

94

https://docs.oracle.com/javase/tutorial/jmx/
https://docs.oracle.com/javase/tutorial/jmx/
http://lttng.org/

[55]

[56]

[57]

[58]

[59]

[60]

[64]

customized program analysis tools with dynamic instrumentation. SIGPLAN Not.,
40(6):190-200, June 2005.

Zohar Manna. Temporal verification of reactive systems: safety, volume 2. Springer
Science & Business Media, 1995.

Ramy Medhat, Yogi Joshi, Borzoo Bonakdarpour, and Sebastian Fischmeister. Ac-
celerated runtime verification of LTL specifications with counting semantics. CoRR,
abs/1411.2239, 2014.

Ramy Medhat, Deepak Kumar, Borzoo Bonakdarpour, and Sebastian Fischmeister.
Sacrificing a Little Space Can Significantly Improve Monitoring of Time-sensitive
Cyber-physical Systems. In ACM/IEEE International Conference on Cyber-Physical
Systems, ICCPS, Berlin, Germany, April 14-17, 2014, pages 115-126. IEEE Com-
puter Society, 2014.

Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Rosu.
An overview of the MOP runtime verification framework. STTT, 14(3):249-289, 2012.

Anders Mgller. dk.brics.automaton — finite-state automata and regular expressions
for Java, 2010. http://www.brics.dk/automaton/.

Bongki Moon, Inés Fernando Vega Loépez, and Vijaykumar Immanuel. Efficient
algorithms for large-scale temporal aggregation. [EFEE Trans. Knowl. Data Eng.,
15(3):744-759, 2003.

Andreas Morgenstern, Manuel Gesell, and Klaus Schneider. An asymptotically correct
finite path semantics for 1tl. In Logic for Programming, Artificial Intelligence, and
Reasoning, pages 304-319. Springer, 2012.

MPlayer - The Movie Player. http://www.mplayerhq.hu, 2015.

Samaneh Navabpour, Yogi Joshi, Wallace Wu, Shay Berkovich, Ramy Medhat, Bor-
zoo Bonakdarpour, and Sebastian Fischmeister. RiTHM: A tool for enabling time-
triggered runtime verification for ¢ programs. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages 603-606,
New York, NY, USA, 2013. ACM.

Rodolfo Pellizzoni, Patrick O’Neil Meredith, Marco Caccamo, and Grigore Rosu.
Hardware Runtime Monitoring for Dependable COTS-Based Real-Time Embedded
Systems. In Proceedings of the 29th IEEE Real-Time Systems Symposium, RTSS

95

http://www.mplayerhq.hu

[65]

[66]

[67]

[68]

2008, Barcelona, Spain, 30 November - 8 December 2008, pages 481-491. IEEE Com-
puter Society, 2008.

Amir Pnueli. The temporal logic of programs. In Foundations of Computer Science,
1977., 18th Annual Symposium on, pages 46-57. IEEE, 1977.

Shravan K. Rayanchu, Arunesh Mishra, Dheeraj Agrawal, Sharad Saha, and Suman
Banerjee. Diagnosing Wireless Packet Losses in 802.11: Separating Collision from
Weak Signal. In Proceedings of the 27th Conference on Computer Communications,
INFOCOM’08, pages 735-743. IEEE, April 2008.

Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard. MarQ: Monitoring at
Runtime with QEA. In Christel Baier and Cesare Tinelli, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 21st International Conference, TACAS
2015, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9035 of
Lecture Notes in Computer Science, pages 596—610. Springer, 2015.

Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Google cluster-usage traces:
format + schema. Technical report, Google Inc., Mountain View, CA, USA, November
2011. Revised 2012.03.20. http://code.google.com/p/googleclusterdata/wiki/
TraceVersion?2.

Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Google Cluster-usage Traces:
Format + Schema. Technical report, Google Inc., Mountain View, CA, USA, Novem-
ber 2011. Revised 2012.03.20. http://code.google.com/p/googleclusterdata/
wiki/TraceVersion2.

Usa Sammapun, Insup Lee, and Oleg Sokolsky. RT-MaC: Runtime Monitoring
and Checking of Quantitative and Probabilistic Properties. In 11th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2005), 17-19 August 2005, Hong Kong, China, pages 147-153, 2005.

Torben Scheffel, Malte Schmitz, Sebastian Hungerecker, Marco Kabelitz, Christofer
Kriiger, and Johannes Thorn. LamaConv: Logics and Automata Converter Library.
http://www.isp.uni-luebeck.de/lamaconv, 2015.

Aamir Shafi, Bryan Carpenter, Mark Baker, and Aftab Hussain. A Comparative Study
of Java and C Performance in Two Large-scale Parallel Applications. Concurrency
and Computation: Practice and Experience, 21(15):1882-1906, 2009.

96

http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://www.isp.uni-luebeck.de/lamaconv

73]

[74]

[75]

[76]

[77]

[78]

K. Sollins. The TFTP Protocol (Revision 2). RFC 1350 (Standard), July 1992.
Updated by RFCs 1782, 1783, 1784, 1785, 2347, 2348, 2349.

Scott D. Stoller, Ezio Bartocci, Justin Seyster, Radu Grosu, Klaus Havelund, Scott A.
Smolka, and FErez Zadok. Runtime verification with state estimation. In Runtime
Verification, pages 193-207. Springer, 2012.

G. Tassey. The economic impacts of inadequate infrastructure for software testing,
2002.

Prasanna Thati and Grigore Rosu. Monitoring algorithms for metric temporal logic
specifications. Electr. Notes Theor. Comput. Sci., 113:145-162, 2005.

Virginie Wiels, Rémi Delmas, David Doose, Pierre-Loic Garoche, Jacques Cazin, and
Guy Durrieu. Formal verification of critical aerospace software. AerospaceLab Journal,
2012.

John Wilkes. More Google Cluster Data. Google research blog, November 2011. http:
//googleresearch.blogspot.com/2011/11/more-google-cluster-data.html.

97

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

	List of Tables
	List of Figures
	Introduction
	Overview of Runtime Verification
	RitHM - A Comprehensive Framework
	Runtime Verification of Lossy Traces
	Contributions
	Organization

	Background and Related Work
	Overview of Various RV tools and techniques
	Competition on Software for Runtime Verification (CSRV'14)
	Discussion
	Preliminaries on Runtime Verification of LTL
	Overview of LTL
	Finite Path Semantics for LTL

	RitHM Framework
	Goals of RitHM's design
	RitHM Framework
	RitHM Architecture
	Interoperability of Monitors in RitHM
	RitHM for RV in Outline Mode

	RitHM Plugins
	Observer Plugins
	Specification-rewriter Plugins
	Monitor-synthesizer Plugins
	Other Plugins
	RitHM Usage

	Considerations for RitHM's Design
	The Front-end and Back-end of RitHM
	Support for Multiple Logical Formalisms
	Support for Monitor Plugins and Multiple Back-ends
	Interoperability between RitHM's Monitors
	Evaluation of architectures using ATAM
	Evaluation of RitHM's Architecture
	Evaluation of RiTHM's Architecture
	Evaluation of MOP's Architecture
	Evaluation of Larva's Architecture
	Discussion

	Case-studies for Monitoring using RitHM
	Monitoring Google Cluster Traces
	Monitoring Engine Control Unit (ECU) Traces
	Lessons Learned

	Problem Description for Loss-tolerant Monitoring
	Our Model
	Formal Problem Description
	Monitorability of Ltl formula under Transient Loss of Events
	Motivating Examples
	Formal Definition

	Monitoring Lossy Traces
	Synthesis of Loss-tolerant Monitors
	Correctness of Loss-tolerant Monitors
	Performance

	Case-studies for Loss-tolerant Monitoring
	MPlayer
	Settings
	Results

	Google Cluster-usage Traces

	Future Work and Conclusion
	Future Work
	Conclusion

	References

