55 research outputs found

    The Odonata of Isle Royale, Michigan

    Get PDF
    This paper presents a list of the Odonata recorded from Isle Royale National Park, located in northwestern Lake Superior. Collections from Isle Royale include 38 species of Anisoptera and 12 species of Zygoptera. The list is typical of the boreal regions of North America, and includes nine new records for Isle Royale and one new record for the state of Michigan

    Non-interactive multiple predator effects on tadpole survival

    Get PDF
    Interactions among and within three species of predators were estimated in terms of their effects on prey survival using short-term predation experiments. The prey were tadpoles (Rana temporaria), and the predators were dragonfly larvae (Anax imperator), newts (Triturus alpestris), and backswimmers (Notonecta glauca). Mortality rate per predator imposed by Triturus and Notonecta did not decline with predator density, whereas the predation rate of Anax was strongly reduced when the number of predator individuals increased. Impacts of all three predators were not altered by the presence of other species in pairwise combinations. This system is therefore characterized by interference between individual dragonflies but relatively independent effects of predator species. These results were largely predictable based on the natural history of the predators and are encouraging for attempts to model communities as assemblages of interacting specie

    Predator-Induced Changes in Metabolism Cannot Explain the Growth/Predation Risk Tradeoff

    Get PDF
    Defence against predators is usually accompanied by declining rates of growth or development. The classical growth/predation risk tradeoff assumes reduced activity as the cause of these declines. However, in many cases these costs cannot be explained by reduced foraging effort or enhanced allocation to defensive structures under predation risk. Here, we tested for a physiological origin of defence costs by measuring oxygen consumption in tadpoles (Rana temporaria) exposed to predation risk over short and long periods of time. The short term reaction was an increase in oxygen consumption, consistent with the “fight-or-flight” response observed in many organisms. The long term reaction showed the opposite pattern: tadpoles reduced oxygen consumption after three weeks exposure to predators, which would act to reduce the growth cost of predator defence. The results point to an instantaneous and reversible stress response to predation risk. This suggests that the tradeoff between avoiding predators and growing rapidly is not caused by changes in metabolic rate, and must be sought in other behavioural or physiological processes

    Natural Selection For Environmentally Induced Phenotypes In Tadpoles

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137452/1/evo05119.pd

    A test of the risk allocation hypothesis: tadpole responses to temporal change in predation risk

    Get PDF
    The risk allocation hypothesis predicts that temporal variation in predation risk can influence how animals allocate feeding behavior among situations that differ in danger. We tested the risk allocation model with tadpoles of the frog Rana lessonae, which satisfy the main assumptions of this model because they must feed to reach metamorphosis within a single season, their behavioral defense against predators is costly, and they can respond to changes in risk integrated over time. Our experiment switched tadpoles between artificial ponds with different numbers of caged dragonfly larvae and held them at high and low risk for different portions of their lives. Tadpoles responded strongly to predators, but they did not obey the risk allocation hypothesis: as the high-risk environment became more dangerous, there was no tendency for tadpoles to allocate more feeding to the low-risk environment, and as tadpoles spent more time at risk, they did not increase feeding in both environments. Our results suggest that the model might be more applicable when the time spent under high predation risk is large relative to the time required to collect resource

    Predator‐induced changes in the chemical defence of a vertebrate

    Get PDF
    1. Inducible defences are ubiquitous in the animal kingdom, but little is known about facultative changes in chemical defences in response to predators, especially so in vertebrates. 2. We tested for predator‐induced changes in toxin production of larval common toads (Bufo bufo), which are known to synthesize bufadienolide compounds. 3. The experiment included larvae originating from three permanent and three temporary ponds reared in the presence or absence of chemical cues of three predators: dragonfly larvae, newts or fish. 4. Tadpoles raised with chemical cues of predation risk produced higher numbers of bufadienolide compounds and larger total bufadienolide quantities than predator‐ naive conspecifics. Further, the increase in intensity of chemical defence was greatest in response to fish, weakest to newts and intermediate to dragonfly larvae. Tadpoles originating from temporary and permanent ponds did not differ in their baseline toxin content or in the magnitude of their induced chemical responses. 5. These results provide the first compelling evidence for predator‐induced changes in chemical defence of a vertebrate that may have evolved to enhance survival under predation risk

    Isocline analysis of competition predicts stable coexistence of two amphibians

    Full text link
    We investigated the interaction between larvae of two anuran amphibian species (Rana temporariaand Bufo bufo) to test models of two-species competition. The study had a response surface experimental design with four replicates, each consisting of 24 density combinations. Larval performance—and, by assumption, change in population size—was defined by a linear combination of survival, growth, and development. We fit six competition models from the literature and discovered that density dependence was strongly non-linear, with the highest support for the Hassel–Comins model. Rana temporariawas competitively superior to B. bufo; the impacts of both species on growth and development were about five- to tenfold greater than those on survival. Isocline analysis predicted a stable configuration, which agrees with the observation that these two species are syntopic in nature. The results of this study confirm competition theory by identifying a model structure that agrees with data and making predictions that are broadly supportive of the observations

    A Practical Guide to the Study of Distribution Limits

    Get PDF
    Factors that limit the geographic distribution of species are broadly important in ecology and evolutionary biology, and understanding distribution limits is imperative for predicting how species will respond to environmental change. Good data indicate that factors such as dispersal limitation, small effective population size, and isolation are sometimes important. But empirical research highlights no single factor that explains the ubiquity of distribution limits. In this article, we outline a guide to tackling distribution limits that integrates established causes, such as dispersal limitation and spatial environmental heterogeneity, with understudied causes, such as mutational load and genetic or developmental integration of traits limiting niche expansion. We highlight how modeling and quantitative genetic and genomic analyses can provide insight into sources of distribution limits. Our practical guide provides a framework for considering the many factors likely to determine species distributions and how the different approaches can be integrated to predict distribution limits using eco-evolutionary modeling. The framework should also help predict distribution limits of invasive species and of species under climate change

    Data from: Incipient habitat race formation in an amphibian

    No full text
    Theory defines conditions under which sympatric speciation may occur, and several possible examples of the process in action have been identified. In most cases, organisms specialize onto habitats that fall into discrete categories, such as host species used by herbivores and parasites. Ecological specialization within a continuous habitat gradient is theoretically possible, but becomes less likely with increasing gene flow among clinal habitat types. Here, I show that habitat race formation is underway in a frog, Rana temporaria, along a continuous and spatially mosaic habitat gradient. Tadpoles from 23 populations raised in an outdoor mesocosm experiment showed adaptive phenotypic variation correlated with the predator density in their pond of origin. A survey of microsatellite markers in 48 populations found that neutral genetic divergence was enhanced between ponds with very different densities of predators. This represents a new example of habitat specialization along a continuous habitat gradient with no spatial autocorrelation in habitat
    corecore