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ABSTRACT: Factors that limit the geographic distribution of species
are broadly important in ecology and evolutionary biology, and under-
standing distribution limits is imperative for predicting how species will
respond to environmental change. Good data indicate that factors such
as dispersal limitation, small effective population size, and isolation are
sometimes important. But empirical research highlights no single fac-
tor that explains the ubiquity of distribution limits. In this article, we
outline a guide to tackling distribution limits that integrates established
causes, such as dispersal limitation and spatial environmental heteroge-
neity, with understudied causes, such as mutational load and genetic or
developmental integration of traits limiting niche expansion. We high-
light how modeling and quantitative genetic and genomic analyses can
provide insight into sources of distribution limits. Our practical guide
provides a framework for considering the many factors likely to deter-
mine species distributions and how the different approaches can be in-
tegrated to predict distribution limits using eco-evolutionary modeling.
The framework should also help predict distribution limits of invasive
species and of species under climate change.

Keywords: environmental gradients, genetic drift, mutational load,
genetic variation, limits to adaptation, population size.

Introduction

The distributions of species are always restricted in space.
In this review, we are concerned with the questions of why
distributions are geographically restricted, whether distri-
bution boundaries reflect the limits of the realized niche
(Hutchinson 1957), why niche evolution is constrained,
and what the genetic basis of constraint is. These questions
center around extrinsic and intrinsic factors affecting distri-
bution limits: environmental heterogeneity, low genetic vari-
ation, and genetic drift leading to mutational load. The an-
swers to these questions have important ecological and
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evolutionary implications. For example, restricted distribu-
tions create turnover of species composition in space, which
is the main source of global biodiversity (Brown et al. 1996).
Insights into the limits of niche evolution and the role of
small population size are also relevant for long-term conser-
vation of species, managing living natural resources, breeding
traits for resistance to environmental change, and predicting
future distribution limits of invasive species.

There is no single, general explanation for geographic dis-
tribution limits. This has been emphasized in previous re-
views of adaptation to marginal conditions (Kawecki 2008),
range limits (Case et al. 2005; Bridle and Vines 2007; Gas-
ton 2009; Sexton et al. 2009), and metalevel analyses of
the abundant-center hypothesis (Sagarin and Gaines 2002;
Eckert et al. 2008; Abeli et al. 2014; Pironon et al. 2017). As
we clarify below, empirical studies find examples of factors
that are important in certain cases, but multiple factors can
be important, and they often differ among species and in dif-
ferent parts of the range. But this does not preclude the ex-
istence of generalities about causes of range limits. In fact,
it would be helpful to develop an account of factors that
are important in certain circumstances or for certain kinds
of species. Such an account will require a collection of em-
pirical studies that have systematically quantified multiple
factors for a variety of taxa. The goal of this paper is to out-
line an integrative framework for addressing causes of geo-
graphic distribution limits, applicable to nearly any organ-
ism. Our prescription may be ambitious, and all aspects
will not be applicable in all contexts, but we hope that it
helps direct research effort toward understudied questions
and toward integrating approaches.

The framework that we suggest for studying distribution
limits is summarized in figure 1. Ideally, an investigation
should answer five questions. (1) Do range limits coincide
with niche limits? (2) Is niche evolution constrained by the
spatial pattern of environmental change? (3) Is the distribu-
tion limited by the presence of a close relative species? (4) Is
evolution constrained by small population size and isola-
tion? And (5) is evolution affected by the genetic architec-
ture of traits that underlie the niche? There are good reasons
for addressing the first question at the beginning, whereas
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Levels/Questions

1/Dispersal limitation: Are range
limits (RL) niche limits (NL)?

2/Environmental limitation:
What is the shape of important
gradients?

3/Genetic limitation: Does the
distribution end where a related
taxon occurs?

Explanations

Species’ range limits

v

Dispersal limitation (RL < NL)

v

Niche limitation (RL = NL)

v

Environmental limitation: shape of
environmental gradients within the
range and at edges

v

Genetic limitation

v

Genetic limitation by hybridization
or the evolution of character
displacement

v

Genetic limitation other than
hybridization or character
displacement

|

v

v

4/Genetic limitation: Is
evolutionary potential constrained
by low N, or reduced variation in
specific traits?

due to low N,

Reduced evolutionary potential

Reduced evolutionary potential in
specific traits responsible for
niche limitation

|

v

5/Genetic limitation: Is drift Reduced

opposing directional or purifying efficacy of

selection? (left) directional
selection

Are niche-limiting traits
genetically less variable or more
integrated? (right)

v v v

Increased Low genetic High genetic
mutational load variation for integration or
or expansion single traits costs of traits

load

Figure 1: Flow chart guiding the analysis of causes for species’ distribution limits. For each node (level), research questions (in reddish boxes)
are suggested that help distinguish the importance of two (possibly nonexclusive) explanations for distribution limits (in green or blue boxes).
Green coloration highlights questions and approaches that have traditionally fallen within ecology; blue coloration depicts questions and

approaches within evolutionary biology.

the other four may be addressed in any sequence. Niche lim-
its must be investigated at the outset because subsequent
questions presuppose that the evolution of the niche is con-
strained. If the range limit is smaller than the species’ real-
ized niche limit, then the distribution is currently limited
by dispersal, and detailed study of evolutionary constraints
is not necessary.

Factors Affecting Distribution Limits:
Dispersal Limitation

A prerequisite in any study of range limits is that the dis-
tribution of the species is well characterized (Sagarin et al.
2006). An initial step therefore consists of assembling occur-
rence records to create a distribution map over a predefined

study area. The area need not encompass the entire distribu-
tion of the species, but the extent of sampling must be appro-
priate for the questions under study. For example, separate
maps for different portions of a distribution will be needed
if the question involves comparing invasive and native ranges
of introduced species (Atwater et al. 2018). Range compila-
tion must also include screening for sampling biases and out-
liers (e.g., Rocchini et al. 2011).

To distinguish dispersal limitation from niche limitation,
we test whether the organism could live in nearby regions
outside the current distribution (fig. 1, level 1, in green). Dis-
persal limitation at the edge of a range is difficult to observe
directly and is therefore studied by indirect means. The cor-
relative method asks whether observed distribution limits
coincide with the limits of environmental conditions toler-
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ated by the organism (e.g., Chardon et al. 2015). Those tol-
erance limits are estimated using habitat suitability models
(HSMs; sometimes known as species distribution models),
which are algorithms that detect associations between field
records of a species and environmental variables. Dispersal
limitation is inferred to be unimportant if the multidimen-
sional description of environmental tolerance emerging from
the HSM matches closely thelocation of the geographic range.
On the basis of this approach, Lee-Yaw et al. (2016) found
that habitat suitability consistently declined from within-
to beyond-range sites in 39 of 40 species, providing evidence
that dispersal limitation is not very important. Cunningham
et al. (2016) and Lee-Yaw et al. (2018) have devised explicit
tests of whether range limits coincide with niche limits re-
vealed by HSMs.

The set of environmental conditions predicted to be suit-
able by an HSM is often interpreted as an operational depic-
tion of the realized niche (Guisan et al. 2017, pp. 21-40). Not
everyone is comfortable with this interpretation. One issue
is that the spatial resolution and dimensionality of an HSM
may be inappropriate for the scale of the niche. Problems
with resolution arise when environmental variables are avail-
able at a scale far different (usually greater) than that at
which the organism experiences its environment. Problems
with niche dimensionality can arise when the model is built
on a limited set of variables, usually related to climate. But
these problems can be surmounted by collecting fine-scale
data, including variables that are likely to be important in
the context of the organism’s natural history and including
data on other organisms that may interact with the focal spe-
cies (Fournier et al. 2017; Mertes and Jetz 2018; Raath et al.
2018). A second issue is that the breadth of the niche may
be overestimated for species with high dispersal ability that
occur in “sink” habitats, where conditions are unsuitable
for supporting population growth (Pulliam 2000). This prob-
lem can be overcome, with some effort, by combining the
HSM with information on population growth rate or local
density (Eckhart et al. 2011; Schliep et al. 2018).

In the end, the most difficult challenge of working with
HSMs may be related to their correlative nature. Associations
between occurrence and a set of convenient climate variables
could reflect causative physiological processes, but they need
notdoso because climate may correlate with unknown biotic
or abiotic transitions (e.g., Saninand Anderson 2018). An al-
ternative distribution modeling approach, called mechanis-
tic niche modeling, has been developed in part to strengthen
the link of causation (Huey et al. 2012; Kumar et al. 2014;
Kearney et al. 2018). These models produce an estimate of
the organism’s fundamental niche using a substantial amount
of data on physiology and behavior.

The second approach to detecting dispersal limitation is
to experimentally transplant organisms into sites beyond
the range edge to determine whether they can persist outside
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their range (reviewed in Hargreaves et al. 2014). If popula-
tion growth rate (A) is <1 beyond the current edge, it is con-
cluded that the distribution limit must be caused by envi-
ronmental limitation rather than dispersal limitation. Thus,
long-term transplant experiments that include sites within
and beyond the range can show unambiguously that organ-
isms are not dispersal limited, at least under the conditions
prevailing during the experiment. Their disadvantage is that
they are labor intensive and costly when performed at many
sites and over many years. Hargreaves et al. (2014) discuss
important considerations for designing transplant experi-
ments, including adequate replication of study sites, captur-
ing relevant environmental variables, sourcing organisms
from across the range, and estimating lifetime performance
along with its separate components. Transplants also run
the risk of accidentally releasing organisms beyond their nat-
ural range or enabling gene flow between transplanted and
local populations. Although rarely discussed, these outcomes
are undesirable and should be avoided by implementing
proper containment of individuals and propagules.

On balance, evidence from transplant experiments shows
that geographic range limits are frequently caused by limits
to niche evolution: in a meta-analysis, performance declined
beyond the range in 86% of studies that considered lifetime
fitness, and no self-sustaining transplants were detected be-
yond the current range in 25% of studies (Hargreaves et al.
2014).

Future Research Directions

Combining correlative models with transplant experiments
can produce compelling evidence for or against dispersal lim-
itation if the two methods concur, as suggested by Lee-Yaw
etal. (2016). Alternatively, ifa transplant experiment suggests
that persistence beyond the range edge is feasible, habitat
suitability modeling could help decide whether conditions
at transplant sites were exceptional when the experiment
was conducted. A strength of HSMs is that they are not sen-
sitive to exceptional environmental conditions because they
detect associations between distribution and the environ-
ment that have unfolded over many generations; in contrast,
an experiment detects the effects of current conditions. Dis-
cordance between niche limits and range limits in an exper-
iment could be explained if conditions at beyond-range sites
were particularly benign relative to the longer term climate
records used by the HSM. This sort of comparison necessi-
tates carefully monitoring the environment during a trans-

plant study.

Limitation by Steep Environmental Gradients

If no clear evidence for dispersal limitation is found for a par-
ticular edge of the distribution, the next question is: What
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limits the evolution of the ecological niche? We know the
organism could move beyond the current range in this re-
gion, but it fails to establish new populations. The range limit
is then associated with a lack of adaptation to environmental
conditions beyond the range. Constraints on adaptation may
arise from selection itself, discussed in this section, or from
the genetic composition of populations, discussed later (fig. 1,
level 2). As explained below, what we call environmental lim-
itation actually consists of three components: steepness of en-
vironmental change, dispersal, and change in demography
toward the edge.

Environmental conditions encountered at the distribution
edge mayimpose altered natural selection on range-edge pop-
ulations, and the pattern of change in the environment deter-
mines how rapidly selection changes. How must the envi-
ronment change such that the evolution of niche expansion
is prevented? This question has been addressed in models of
spatial environmental change and distribution limits in sin-
gle species or interacting species. Other models predict range
limits in the absence of evolutionary change (reviewed in Case
et al. 2005); these are not discussed here because they do not
address constraints on adaptation to conditions beyond the
range limit.

Abiotic environmental gradients and single species. Spa-
tially explicit quantitative genetics models of continuous dis-
tribution along linear gradients predict that the range bound-
ary settles at a point where dispersal outward from the core
prevents adaptation by forcing the population growth rate be-
low zero. If the gradient (b; change in trait optimum 6 over
space x: 0(x) = bx) is steep relative to dispersal distance (o,
the average distance between the birthplaces of a female and
her offspring), this point is close to the core and the distribu-
tion is small (Kirkpatrick and Barton 1997; Case and Taper
2000; Garcia-Ramos and Huang 2013). In these models, ran-
dom dispersal from the core is an important constraint on
niche evolution. When dispersal is nonrandom and instead
sensitive to variation in habitat quality, steep environmen-
tal gradients can still attract distribution edges, although the
mechanism is different (Armsworth and Roughgarden 2005).
Directed dispersal tends to move individuals toward the core
and away from edge populations; this reduces the impor-
tance of swamping but also erodes population size at the edge
and strongly restricts the occurrence of the species to the core
area.

Another set of models assumes discrete high- and low-
quality habitat patches connected by a demographic source-
sink dynamic (reviewed in Kawecki 2008). If the low-quality
patch is not self-sustaining and depends on migrants from
the source, local adaptation in a quantitative character will
fail when the environmental optima differ too much between
the two patches (Holt et al. 2003). However, unlike models of
linear environmental gradients, source-sink models point to
conditions under which adaptation at range edges can be en-

hanced by dispersal. The main constraints on niche evolu-
tion in sink habitats are demographic (low survival or fe-
cundity) and genetic (low variation). Higher migration from
the source can promote adaptation by boosting population
size and importing variation (Kawecki and Holt 2002; Holt
etal. 2003). Of course, this outcome is much less likely if or-
ganisms can select habitats because few will actively choose
to settle in a sink habitat (Armsworth and Roughgarden
2005).

Abiotic environmental gradients and biotic interactions.
Models that consider competition among species agree that
abrupt range limits can establish along continuous abiotic
gradients even under shallow environmental change (Case
and Taper 2000; Case et al. 2005). Interspecific competition
within contact areas selects for ecological character displace-
ment rather than adaptation to the gradient itself. This causes
population density to decline, which in turn may enhance
asymmetrical gene flow from the center and cause formation
of a range edge. Distribution limits of competing species are
especially likely to establish in regions at which the environ-
mental gradient becomes suddenly steeper (Case and Taper
2000; Garcia-Ramos and Huang 2013). Under predator-prey
and host-parasite interactions, dispersal may play a more pos-
itive role in colonizing and promoting local adaptation within
peripheral sink populations (Hochberg and van Baalen 1998;
Holt et al. 2011).

Biotic interactions. Simple ecological models indicate that
competitive interactions in the absence of an abiotic envi-
ronmental gradient may create a checkerboard pattern of
distribution but cannot account for geographic range limits
(Aratjo and Rozenfeld 2014). On the other hand, positive
interactions, such as mutualism and commensalism, can af-
fect occurrence at both local and geographic scales. Because
Aratjo and Rozenfeld’s (2014) model did not include co-
evolution, it might be informative to develop a more general
kind of model that can simultaneously accommodate evo-
lutionary change, the extent and shape of an environmental
gradient, and the type of interaction among species.

The empirical literature provides mostly indirect evidence
on how conditions change at the edge of distributions. En-
vironmental suitability sometimes degrades from center to
margin (Sexton et al. 2009; Pironon et al. 2017). For exam-
ple, Lira-Noriega and Manthey (2014) observed that distance
to the climatic niche center increased with distance from the
center of geographic distribution for 24 of 40 animal and
plant taxa surveyed. Comparisons of demography between
core and edge have produced inconsistent results (Sexton
et al. 2009; Abeli et al. 2014; Pironon et al. 2017). But both
habitat suitability and demographic performance decline
just beyond range edges in transplant experiments on many
species (Hargreaves et al. 2014; Lee-Yaw et al. 2016). These
comparisons do not usually reveal the shape of environmen-
tal change from within to beyond the range and particularly
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whether it steepens near the range boundary (but see Nor-
mand et al. 2009; Lee-Yaw et al. 2018). Indeed, this test is
not even possible for most studies, which cannot identify
which environmental factors limit the distribution (Louthan
et al. 2015).

Future Research Directions

Although range limits may occur on shallow environmental
gradients, theory suggests that gradients that are steep rela-
tive to dispersal or that become steeper are most likely to limit
adaptation and cause range limits (e.g., Holtand Gaines 1992;
Case and Taper 2000; Holt et al. 2003; Garcia-Ramos and
Huang 2013; Polechova and Barton 2015; Polechova 2018).
This should motivate studies looking for regions of increas-
ing steepness of change or breakpoints in environmental con-
ditions that coincide with distribution edges. The relevant
conditions may be identified with HSMs aimed at detecting
environmental factors specifically associated with the edge of
the distribution and therefore factors for which the rate of
spatial change should reflect the rate of change in the opti-
mum of an evolving trait. Lee-Yaw et al. (2018) determined
that the variables predicting the distribution of a plant spe-
cies in an HSM changed linearly or had multiple breakpoints
along replicate transects crossing the range limit. Two key
comparisons are, Does the change in limiting environmen-
tal variables at the distribution boundary exceed that of other
variables that do not predict the species distribution? And
does the change exceed that of the same variables along tran-
sects at random locations away from the range boundary?
Similar studies are needed in many more species.

Future work should also describe the spatial distribution
and quality of habitat relative to the dispersal capability of
the organism. While characterizing the distribution of po-
tential habitat may be a straightforward mapping exercise,
assessing habitat quality requires data on spatial variation in
demography or population growth rate, which may be de-
duced for parts of or entire species ranges by demographic
distribution modeling (Merow et al. 2014). Complex envi-
ronmental heterogeneity within the range is likely; this may
be a nuisance in the context of testing theory, but it could help
reveal limiting environmental variables and establish a link
between habitat quality and demography. Finally, natal dis-
persal (o) can be assessed by tracking individuals directly
(e.g., Forsman et al. 2002; Rieux et al. 2014) or by estimating
the decay of relatedness among densely sampled individuals
using molecular markers (Vekemans and Hardy 2004).

Limitation by Hybridization

If there is no evidence of dispersal limitation or clear en-
vironmental limitation at the distribution boundary, then
failure to adapt to conditions beyond the range edge may

Environment and Genetics of Distribution Limits 777

be caused by a set of interrelated factors that we will call ge-
netic limitation. One cause of genetic limitation is hybrid-
ization between closely related species in parapatric contact
(fig. 1,1evel 3). The consequences may include hybrid break-
down and the evolution of ecological or reproductive char-
acter displacement, and this can create range limits even on
shallow environmental gradients without any more direct
evolutionary constraint to niche expansion (Goldberg and
Lande 2006; reviewed in Case et al. 2005; Bridle and Vines
2007). It is unclear how often range limits are enforced by
hybridization, but narrow parapatric hybrid zones are com-
mon in some taxa (e.g., Moore 1977; Highton 1995). The
implication for empirical studies is that range limits should
be inspected for close relatives with parapatric or partially
overlapping patterns of occurrence along with indications
of hybridization, ecological character displacement, or as-
sortative mating.

Limitation by Low Effective Population Size
and Associated Fitness Decline

Genetic limitation may also be caused by the neutral process
of genetic drift affecting the entire genome in edge popula-
tions that are small over long periods of time or have expe-
rienced demographic bottlenecks, or by other genetic con-
straints specific to traits and genes important for adaptation
(Hoffmann and Blows 1994; fig. 1, levels 4 and 5). This sec-
tion describes genetic limitation due to neutral processes op-
posing selection (left side of level 5), while the next section
focuses on genetic limitation in adaptive traits (right side of
level 5).

Low N, Near the Edge of the Range

Mechanisms causing low N.. Adaptation at range limits is
likely to be limited by population isolation and small effec-
tive population size (N.). Two main mechanisms are hypoth-
esized to be involved. First, the abundance of a species de-
clines toward the range edge because habitat becomes less
suitable (abundant-center hypothesis; Brown 1984). The pop-
ulation genetic extension of the abundant-center hypothesis
predicts that declining density of individuals and popula-
tions at the range edge increases genetic drift and genetic iso-
lation, which leads to declining genetic variation within lo-
cal populations and increasing variation among populations
(Eckert et al. 2008). A recent review of many taxa noted that
51% of studies measured a significant decline in the density
of individuals within populations and 81% measured a de-
cline in the density of populations from center toward the
periphery (table 1 in Pironon et al. 2017). These values, far
higher than expected by chance, support the abundant-center
hypothesis but also suggest that the biogeographic pattern is
not universal. Data in Pironon et al. (2017) also support the
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population genetic extension of the abundant-center hypoth-
esis, especially when studies include populations at the very
edge of the distribution.

The second mechanism causing reduced N, at range edges
is related to the geographic pattern of demographic history.
Many species were forced by Quaternary glaciation into re-
fugia, out of which they periodically expanded during inter-
glacial periods; this strongly influences the current geographic
distribution of genetic diversity (Hewitt 2000). Highest genetic
diversity is often found in areas of previous refugia, which
may not fall in the center of the current distribution (Hewitt
1996). Several studies have noted that the history of coloniza-
tion more accurately predicts the decline in genetic variation
away from distribution cores than does current habitat suit-
ability (Duncan etal. 2015; Pironon et al. 2015). These results
suggest that studies of distribution limits would benefit from
a firm understanding of the history of the geographic range,
at least over the time horizon required for alleviating the worst
consequences of genetic drift (several thousand generations;
Peischl et al. 2013).

Low N, Favors Drift over Selection

Genetic drift opposing directional (positive) selection. An im-
portant evolutionary implication of small population size is
genetic drift opposing selection. In the theory of range dy-
namics, this is particularly clear in Polechova and Barton
(2015), who discovered that a key parameter affecting distri-
bution in a one-dimensional continuous habitat with an en-
vironmental gradient reflects the relative magnitudes of drift
and directional selection. In small populations with strong
drift, the range edge may be stable or contract toward the core,
or the entire range may become fragmented. In contrast, the
range is predicted to expand when selection is strong relative
to drift. The prediction that selection at the edge is so weak as
to be overcome by drift may seem unlikely, but this could be
tested by checking for a reduced signature of positive selec-
tion within coding genomic regions in populations close to
the range edge.

Genetic drift opposing purifying (negative) selection—mu-
tational load. A similar evolutionary implication of low N, is
mutational or drift load, an increase in frequency of delete-
rious mutations due to genetic drift and less effective purify-
ing selection (box 1; Kimura et al. 1963; Whitlock et al. 2000).
Theory suggests that mutational load can contribute impor-
tantly to range limits in established ranges. Henry et al. (2015)
considered a fully occupied, one-dimensional array of habi-
tat patches along a linear gradient of carrying capacity. When
new mutations were deleterious, mutational load sharply cur-
tailed the range, especially when dispersal was limited and
population growth rate low. Because of the assumption that
the entire range is initially occupied, this model may best ap-
ply to stable ranges or rear edges of dynamic distributions.

Mutational load can also increase in nonequilibrium situa-
tions, such as during population expansion and bottlenecks
(Kirkpatrick and Jarne 2000). Load becomes especially se-
vere over a series of bottlenecks along a geographic expan-
sion route (so-called expansion load; Peischl et al. 2013, 2015;
Peischl and Excoffier 2015). In this case, load accumulates
due to “surfing” (serial bottlenecks and random increase)
of deleterious alleles on expanding wave fronts (Klopfstein
et al. 2006; Excoftier and Ray 2008). Under a stepping-stone
model, mutational load can moderate the rate of spatial ex-
pansion, at some point changing the dynamic from increas-
ing to stable (Peischl et al. 2015). However, the presence of
an environmental gradient along the expansion route may re-
duce the expansion load because the speed of expansion is re-
duced by increased maladaptation (Gilbert etal. 2017). Taken
together, these models predict that mutational load can re-
strict the range under conditions of range expansion by low-
ering population growth rate even in the absence of an envi-
ronmental gradient.

Some of these predictions have been tested by comparing
mutational load across geographic ranges. Comparative stud-
ies of human populations infer that deleterious mutations
within coding DNA regions haveaccumulated during the range
expansion from Africa to Eurasia and the Americas (Loh-
mueller et al. 2008; Simons et al. 2014; Henn et al. 2016).
Heightened genomic estimates of load at both leading and
rear edges of the distribution have also been reported in plants
(Zhang et al. 2016; Gonzalez-Martinez et al. 2017; Willi et al.
2018). An alternative approach is to measure heterosis ex-
perimentally in natural populations (e.g., van Treuren et al.
1993). In these experiments, individuals are typically crossed
with other individuals from the same and different popula-
tions, and the difference in fitness between the two cross types
estimates heterosis. Offspring of the between-population
crosses express higher fitness because their recessive deleteri-
ous mutations occur in the heterozygous state (Lynch 1991).
These two kinds of estimates of load—genomic and pheno-
typic—were highly correlated in one recent study (Willi et al.
2018).

Future Research Directions

More information is needed on the role of genetic drift op-
posing selection in the context of range limits; there are few
empirical studies of species other than humans. One should
begin by describing the history of the species’ range because
genetic variation often declines more strongly with past col-
onization than it does with distance from the geographic
core (Duncan et al. 2015; Pironon et al. 2015). This requires
a rooted population phylogeny, which can be inferred using
sequence or single-nucleotide polymorphism (SNP) data from
arepresentative sample of populations along with at least one
closely related species (reviewed in McCormack et al. 2013;
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Pickrell and Pritchard 2012). Similar data can be used to es-
timate the effective population size, N,, and therefore the
magnitude of drift across the distribution of a species. When
gene flowis relatively rare, genomic diversity estimates should
reflect local N.. Together with environmental data, genomic
estimates of N, and population history can provide insight
into the role of history versus recent environmental condi-
tions in determining N, (as done by hindcasting distributions
in Duncan et al. 2015; Pironon et al. 2015).

Genome-wide signatures of directional and purifying se-
lection come from various statistics estimated with (usually)
sequence data from coding regions. In nonmodel organisms,
the best option is exome sequencing with some depth; this
enables complete de novo assembly, gene prediction, gener-
ating SNP data sets, and dividing SNPs into synonymous and
nonsynonymous categories (e.g., Blande et al. 2017). The
genome-wide signature of recent positive selection may be
best evaluated—gene by gene or window by window—by us-
ing tests that combine pairs of statistics that cancel each
other’s sensitivity to (demographic) noise (Zeng et al. 2006).
Estimates of mutational load commonly quantify the number
of polymorphic and presumably deleterious SNPs weighted
by their derived frequency relative to an out-group and scaled
to background diversity in SNPs with presumably no effect
(Lohmueller et al. 2008). The simplest distinction is between
nonsynonymous and synonymous SNPs, but several algo-
rithms predict likely mutational effects of nonsynonymous
SNPs based on either the type of amino acid change (Cin-
golani et al. 2012) or site conservation in homologous se-
quences in large protein databases (Vaser et al. 2016). Finally,
estimates of positive selection and mutational load can be re-
lated to the population’s range position, the history of range
expansion, and habitat suitability.

Phenotypic estimates of mutational load from crossing ex-
periments have not been used to compare range edge with
central populations. If the within- and between-population-
crossed offspring are reared in a common garden, they re-
veal the demographic implications of load. The detrimental
impact of load may include not only a decline in demo-
graphic performance but also an increase in demographic
stochasticity (Melbourne and Hastings 2008; Willi and Hoff-
mann 2009). Moreover, rearing offspring from a crossing
experiment in multiple gardens or field sites across the dis-
tribution could reveal environmental impacts on the expres-
sion of load. As has been shown for inbreeding depression
(Armbruster and Reed 2005), the fitness consequences of mu-
tational load may be enhanced under stressful conditions, and
this could be especially relevant at the edges of distributions.

Limitation by Low Genetic Variation

The fifth general cause of distribution limits is a genetic con-
straint specific to traits and genes important for adaptation
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within edge habitats (fig. 1, levels 4 and 5, right side). This kind
of constraint comes in two forms: low genetic variation for
key traits determining distribution, and developmental and
functional integration of distribution-determining traits, re-
flected as genetic correlations.

Low genetic variation of single traits. Genetic variation
can vary across a distribution for several reasons. First, N,
may vary geographically, and this affects the expected equi-
librium level of quantitative genetic variation (Willi et al.
2006). If populations at range edges have lower N, then they
should contain reduced (quantitative) genetic variation sim-
ply due to drift (Wright 1931; Kimura 1955). In Polechovd’s
(2018) model of range dynamics in two dimensions and an
environmental gradient, erosion of genetic variation due to
low N, and isolation from dispersal can cause distribution
limits. Second, the strength of natural selection may vary geo-
graphically, and for a variety of reasons genetic variation is
predicted to decline where selection is strong (Crow and Ki-
mura 1970; Bulmer 1971; Robertson and Hill 1983). Popula-
tions experiencing strong selection are especially likely to oc-
cur at the distribution margin if the environment changes
steeply there or if gene flow from more central populations
prevents trait values from reaching the local optimum. In
spite of these theoretical expectations, however, there is lit-
tle empirical evidence that quantitative genetic variation de-
clines in small populations in general or at range boundaries
in particular (Willi et al. 2006; van Heerwaarden et al. 2009;
Gould et al. 2014; but see Pujol and Pannell 2008).

High genetic integration. Even if genetic variation is not
directly limiting, adaptation at the margin of a species’ dis-
tribution could still face constraints arising from genetic
correlations caused by developmental and functional inte-
gration. A genetic constraint can arise if there is a strong ge-
netic correlation and the direction of selection is antagonis-
tic to the correlation (Antonovics 1976; Lande 1979; Arnold
1992; Schluter 1996; Blows 2007; Walsh and Blows 2009).
The potential for constraint is evaluated by quantifying the
availability of genetic variance—summarized by the genetic
variance-covariance matrix (G-matrix) —along the dimen-
sions on which selection is acting. In the context of range
limits, the traits that comprise the G-matrix must be relevant
for adaptation to environmental conditions at the boundary,
along with fitness-related trade-offs and costs associated with
those traits.

Few studies have estimated G-matrices for a realisticnum-
ber of traits in populations representing edge and central parts
of a geographic distribution (Calsbeek et al. 2011; Paccard
etal. 2016). Paccard et al. (2016) suggested that genetic drift
at range edges can modify genetic integration, which in turn
influences evolutionary potential in unexpected ways. Pac-
card and colleagues estimated G-matrices involving 10 eco-
logically relevant traits in populations from the northern
edge, central, and southern edge of the distribution of the
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Box 1: Mutational load

Populations at the edge of stable ranges or rear edges are often isolated and small (Hampe and Petit 2005).
Small population size is predicted to cause increased frequency and eventual fixation of small-effect deleterious muta-
tions as genetic drift overwhelms purifying selection (Kimura et al. 1963). Increasing frequency of deleterious muta-
tions erodes mean fitness and feeds back to further reduce population size, which accentuates the process of mutation
accumulation, finally leading to mutational meltdown and population extinction (Lynch et al. 1995). Mutational load
is also predicted to increase during range expansions (“expansion load”; Peischl and Excoffier 2015), after which it can
persist for thousands of generations. This time horizon approaches that of major climate oscillations, which implies that
expansion load could be relevant for many apparently stable range limits. Hence, edge populations are predicted to bear
enhanced mutational load under all scenarios of distribution dynamics: stable, moving, and expanding (box fig. 1A). This
may be an important and largely overlooked cause of distribution limits.

One well-studied example is human populations expanding out of Africa. The Human Genetic Diversity Proj-
ect data revealed that gene diversity declines with distance from central Africa to Eurasia and the Americas (box
fig. 1B; Lawson Handley et al. 2007). In parallel, the signature of mutational load increases from Africa along the
expansion route. Henn et al. (2016) found that individuals from populations farther from Africa had higher numbers
and frequencies of single-nucleotide polymorphisms within conserved, hardly variable coding regions. This reflects
mutational load, or expansion load, because these variants are likely to be deleterious.
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Box Figure 1: A, Mutational load increasing from the (historic) center of the distribution to the edge, under both stable and expanding
range dynamics. B, Expansion route of humans out of Africa (fop), accompanied by increasing mutational load (bottom). Reprint from
Henn et al. (2012, 2016), with permission from the publisher.
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plant Arabidopsis lyrata. Although total genetic variance
was reduced in edge populations, there were also weaker ge-
netic correlations at the edge and consequently no reduction
in the potential to respond to selection. This may turn out
to be a common pattern because genetic integration created
by correlational selection is predicted to become weaker un-
der genetic drift in small populations (Jones et al. 2003).

Future Research Directions

A most important step for understanding genetic limits is to
identify traits exposed to selection under marginal edge con-
ditions and other traits linked to them by trade-offs (Anto-
novics 1976; Hoffmann and Blows 1994). Much more prog-
ress is needed here. One approach is to use habitat suitability
modeling to discover environmental factors that limit distri-
bution (Lee-Yaw et al. 2018). Next, these factors may suggest
what traits are important, such as cold tolerance at a range
boundary enforced by cold temperatures or foraging effort
that allows fast growth during a shorter growing season.
A second method comes from associations between niche-
determining environmental variables across the species dis-
tribution and genetic variation at a large number of SNPs (re-
viewed in Bragg et al. 2015; Hoban et al. 2016). Alternatively,
genome-wide expression differences among organisms reared
in a common garden have been linked with their site of origin
across species distributions (e.g., Porcelli et al. 2016). These
approaches can return lists of enriched gene ontology terms
or candidate genes that correlate closely with the environ-
ment. A difficulty is that such lists are usually long, and the
connection between enriched gene ontology terms and mea-
surable traits may remain elusive. Third, candidate traits can
be phenotypically assessed in common-garden experiments
or transplants across a species range. Traits measured in a
common environment that covary with conditions at the
source locality or position away from the core will confirm
or further refine the candidate traits involved in constrain-
ing niche evolution (e.g., De Frenne et al. 2013). Ideally, a
combination of methodologies should help identify traits
under selection at the edges of distribution.

Once relevant traits have been identified, the G-matrix
can be estimated for populations of individuals having known
relatedness structure (based on markers, a pedigree, or a
crossing design) by experimentally rearing them under near-
natural conditions or tracking them in natural populations
(Paccard et al. 2016; Delahaie et al. 2017). This must be re-
peated in core and edge populations. Selection can be esti-
mated from the covariance between phenotype and fitness,
preferably at the level of the genotype rather than individual
(Rausher 1992; Wilson et al. 2009). Ideally, this would be
accomplished at and beyond the edge, probably using ex-
perimental or translocated populations. The predicted re-
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sponse to selection is obtained by postmultiplication of the
G-matrix by the vector of linear selection gradients,and con-
straint is evaluated by comparing selection with the pre-
dicted response (Walsh and Blows 2009). One study that
comes close to making this comparison is Charmantier et al.
(2016); most of the quantities required to estimate genetic con-
straint have been measured in mainland and island (range-
edge) populations of a bird.

Integrating Approaches

The study of species distribution limits will benefit from
a combination of three approaches: ecological modeling,
population genomics, and quantitative genetics of niche-
determining traits (fig. 2). Habitat suitability modeling pro-
vides insight into environmental (as opposed to dispersal)
limitation, identifies key niche factors and their pattern of
change at the distribution limit, and narrows the list of can-
didate traits limiting the distribution. Population genomic
analyses can reveal the phylogeographic history, effective
population sizes, isolation, dispersal distances, genome-wide
signatures of positive selection, and magnitude of muta-
tional load. Associating genomic variants with environmen-
tal gradients or specific environmental factors may, with
some luck, highlight aspects of the phenotype involved in
niche adaptation. Third, common-garden experiments on
central and peripheral populations can estimate the impact
of mutational load on declines in performance and vital rates,
characterize trait differences across distributions, and reveal
the genetic architecture of critical traits. Transplant experi-
ments can reveal the degree of local adaptation of edge pop-
ulations, constraints on the selection response created by quan-
titative genetic architecture, and—when beyond-edge sites are
included—dispersal limitation.

Once the relevant evolutionary and demographic param-
eters are known for at least some parts of a species’ range
limit, eco-evolutionary modeling can help assess the contri-
butions of multiple processes to maintaining range limits.
Gradient range models, such as those of Kirkpatrick and
Barton (1997), Polechovd and Barton (2015), and Pole-
chové (2018), are probably too abstract for this task. These
models are strong in illuminating the causes of range limits
but too simplistic for integrating data gathered in the steps
outlined in figure 1. Cotto et al. (2017) described a model that
could be applied to the problem of distribution limits. They
combined spatial information on three niche parameters
with individual-based stochastic simulations, accounting for
species-specific demographic parameters, evolutionary pro-
cesses, and feedback reactions. The model tracked the dy-
namics of three hypothetical traits underlying adaptation
to each niche parameter and predicted geographic distribu-
tion changes under climate change. The relatively fine geo-
graphic scale of this model enabled Cotto et al. (2017) to pre-
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Methods

1 Habitat suitability modeling

Spatial distribution of habitat
suitability
Critical niche parameters

Spatial distribution of niche
parameters

2 Molecular analysis/Sequencing

Estimating the dispersal kernel
Population genetics

Population history

GWAS linking variants with niche
Gene ontology/pathway analysis

3 Demographic and phenotypic trait

analysis

Transplant experiments, including
beyond-edge sites

Demography in relation to
environmental parameters

Fitness comparison of crosses in
common garden; heterosis

Clinal patterns of trait variation in
common garden

G-matrix analysis
Analysis of trade-offs and costs

Questions to be answered by the method

Are distributions limited by dispersal?
What are the important niche parameters?

What is the shape of spatial change in niche
parameters and habitat suitability at the range
edge?

What are dispersal distances?

Do populations at edge have reduced N,? Are
they more isolated?

What is the history of range edges?

Are signatures of directional selection weaker
and of mutational load higher in range-edge
populations?

Are species dispersal limited?
What are the important niche parameters?

What is the shape of spatial change in
demographic parameters at the range edge?
Is local adaptation weaker in range-edge
populations?

Is mutational load higher in range-edge
populations?

Which traits show clinal variation? Do they
trade off with vital rates?

How much genetic varaition exists? Are traits

Questions to be answered by
combining methods

, - Why do populations at edges
have reduced N,? — habitat
suitability and abundance
versus history

Association between niche
parameters and genetic
polymorphisms, and subsequent
gene ontology or pathway
analysis: What are the likely
traits of adaptation?

, ~ Is stress tolerance involved in
trade-offs at the genomic level?

, -, - Relative importance of all
factors in an eco-evo modeling
framework?

tightly integrated? Is tolerance of environmental
stress involved in trade-offs?

Figure 2: Research questions that can be answered by one or a combination of three types of analysis: habitat suitability modeling (1), mo-

lecular genetic analysis (2), and phenotypic trait analysis (3).

dict details such as the spatial distribution of local population
sizes, source-sink characteristics of raster cells, and the role
of adaptation and maladaptation in explaining distribution
and the demographic composition of local populations. Anal-
ogous simulations could be used to integrate factors outlined
in figure 1 and explore their relative importance for deter-
mining the limits of geographic ranges.

In recent decades, progress in the study of range limits has
come from integrating evolutionary with ecological dynam-
ics and adopting a more inclusive perspective on the limits to
adaptation. Theory synthesizing ecology and evolution has
suggested new empirical approaches by posing predictions
that connect genetic mechanisms with demography and his-
tory, and this in turn has expanded the range of mechanisms
that must be tested empirically. The basic questions about the
causes of distribution limits may not have changed much, but
the empirical work must be broadened and made more in-
tegrative to include connections between spatial variation in
the environment and demography, selection, demographic

history and genetic drift, and the genetic architecture of traits
constraining niche evolution. As described in the introduc-
tion, we envision the development of a taxonomy of factors
limiting geographic ranges under various circumstances. Such
an account will inform long-standing discussions about lim-
its to adaptation and may be useful for a variety of practical
matters, such as assisting gene flow, managing population sizes,
and anticipating adaptation of stress resistance under envi-
ronmental change.
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