6 research outputs found
Mortality and recruitment of fire-tolerant eucalypts as influenced by wildfire severity and recent prescribed fire
Mixed-species eucalypt forests of temperate Australia are assumed tolerant of most fire regimes based on the impressive capacity of the dominant eucalypts to resprout. However, empirical data to test this assumption are rare, limiting capacity to predict forest tolerance to emerging fire regimes including more frequent severe wildfires and extensive use of prescribed fire. We quantified tree mortality and regeneration in mixed-species eucalypt forests five years after an extensive wildfire that burnt under extreme fire weather. To examine combined site-level effects of wildfire and prescribed fire, our study included factorial replications of three wildfire severities, assessed as crown scorch and understorey consumption shortly after the wildfire (Unburnt, Low, High), and two times since last preceding fire (30 years since any fire). Our data indicate that while most trees survived low-severity wildfire through epicormic resprouting, this capacity was tested by high-severity wildfire. Five years after the wildfire, percentage mortalities of eucalypts in all size intervals from 10 to >70 cm diameter were significantly greater at High severity than Unburnt or Low severity sites, and included the near loss of the 10–20 cm cohort (93% mortality). Prolific seedling regeneration at High severity sites, and unreliable basal resprouting, indicated the importance of seedling recruitment to the resilience of these firetolerant forests. Recent prescribed fire had no clear effect on forest resistance (as tree survival) to wildfire, but decreased site-level resilience (as recruitment) by increasing mortalities of small stems. Our study indicates that high-severity wildfire has the potential to cause transitions to more open, simplified stand structures through increased tree mortality, including disproportionate losses in some size cohorts. Dependence on seedling recruitment could increase vulnerabilities to subsequent fires and future climates, potentially requiring direct management interventions to bolster forest resilience.Australian Governmen
Assessing fire impacts on the carbon stability of fire-tolerant forests
17 Pág.The carbon stability of fire-tolerant forests is often assumed but less frequently assessed, limiting the potential to anticipate threats to forest carbon posed by predicted increases in forest fire activity. Assessing the carbon stability of fire-tolerant forests requires multi-indicator approaches that recognize the myriad ways that fires influence the carbon balance, including combustion, deposition of pyrogenic material, and tree death, post-fire decomposition, recruitment, and growth. Five years after a large-scale wildfire in southeastern Australia, we assessed the impacts of low- and high-severity wildfire, with and without prescribed fire (≤10 yr before), on carbon stocks in multiple pools, and on carbon stability indicators (carbon stock percentages in live trees and in small trees, and carbon stocks in char and fuels) in fire-tolerant eucalypt forests. Relative to unburned forest, high-severity wildfire decreased short-term (five-year) carbon stability by significantly decreasing live tree carbon stocks and percentage stocks in live standing trees (reflecting elevated tree mortality), by increasing the percentage of live tree carbon in small trees (those vulnerable to the next fire), and by potentially increasing the probability of another fire through increased elevated fine fuel loads. In contrast, low-severity wildfire enhanced carbon stability by having negligible effects on aboveground stocks and indicators, and by significantly increasing carbon stocks in char and, in particular, soils, indicating pyrogenic carbon accumulation. Overall, recent preceding prescribed fire did not markedly influence wildfire effects on short-term carbon stability at stand scales. Despite wide confidence intervals around mean stock differences, indicating uncertainty about the magnitude of fire effects in these natural forests, our assessment highlights the need for active management of carbon assets in fire-tolerant eucalypt forests under contemporary fire regimes. Decreased live tree carbon and increased reliance on younger cohorts for carbon recovery after high-severity wildfire could increase vulnerabilities to imminent fires, leading to decisions about interventions to maintain the productivity of some stands. Our multi-indicator assessment also highlights the importance of considering all carbon pools, particularly pyrogenic reservoirs like soils, when evaluating the potential for prescribed fire regimes to mitigate the carbon costs of wildfires in fire-prone landscapes.This work was supported the Australian Government's Biodiversity Fund (grant number LSP-943972-876), and by the Victorian Department of Environment, Land, Water and Planning through the Integrated Forest Ecosystem Research program. We thank Richard Loyn (formally of ARI) for leading the Biodiversity Fund application, members of the project's Steering committee for their guidance (Jaymie Norris, Gordon Friend, Steve Leonard, Tim O'Brien, and Peter Wilcock), and Adrian Kitchingman and Matt White for the initial desktop site selection. We also thank two anonymous reviewers for their positive contributions to the paper, and the following individuals for their diligent fieldwork: David Bryant, Benjamin Castro, Garry Cheers, Phoebe Macak, Jessica Millett-Riley, Julio César Nájera-Umaña, Brendan Nugent, Steve Sinclair, Geoff Suter, Arn Tolsma, Liz Wemyss.Peer reviewe
Bennettetal2017_EcologicalApplications_CarboninFireTolerantEucForests.xlsx
Data relevant to figures in paper published in Ecological Applications (Bennett et al., 2017, Assessing fire impacts on the carbon stability of fire-tolerant forest
Mortality and recruitment of fire-tolerant eucalypts as influenced by wildfire severity and recent prescribed fire
11 Pág.Mixed-species eucalypt forests of temperate Australia are assumed tolerant of most fire regimes based on the impressive capacity of the dominant eucalypts to resprout. However, empirical data to test this assumption are rare, limiting capacity to predict forest tolerance to emerging fire regimes including more frequent severe wildfires and extensive use of prescribed fire. We quantified tree mortality and regeneration in mixed-species eucalypt forests five years after an extensive wildfire that burnt under extreme fire weather. To examine combined site-level effects of wildfire and prescribed fire, our study included factorial replications of three wildfire severities, assessed as crown scorch and understorey consumption shortly after the wildfire (Unburnt, Low, High), and two times since last preceding fire (30 years since any fire). Our data indicate that while most trees survived low-severity wildfire through epicormic resprouting, this capacity was tested by high-severity wildfire. Five years after the wildfire, percentage mortalities of eucalypts in all size intervals from 10 to >70 cm diameter were significantly greater at High severity than Unburnt or Low severity sites, and included the near loss of the 10–20 cm cohort (93% mortality). Prolific seedling regeneration at High severity sites, and unreliable basal resprouting, indicated the importance of seedling recruitment to the resilience of these fire-tolerant forests. Recent prescribed fire had no clear effect on forest resistance (as tree survival) to wildfire, but decreased site-level resilience (as recruitment) by increasing mortalities of small stems. Our study indicates that high-severity wildfire has the potential to cause transitions to more open, simplified stand structures through increased tree mortality, including disproportionate losses in some size cohorts. Dependence on seedling recruitment could increase vulnerabilities to subsequent fires and future climates, potentially requiring direct management interventions to bolster forest resilience.This work was supported by the Australian Government’s Biodiversity Fund (grant number LSP-943972-876), and by the Victorian Department of Environment, Land, Water and Planning through the Integrated Forest Ecosystem Research program. We thank Richard Loyn (formally of ARI) for leading the Biodiversity Fund application, and members of the project’s Steering committee for their guidance (Jaymie Norris, Gordon Friend, Steve Leonard, Tim O’Brien, and Peter Wilcock). We also thank the following individuals for their diligent work in the field: David Bryant, Benjamin Castro, Garry Cheers, Phoebe Macak, Jessica Millett-Riley, Julio César Nájera-Umaña, Brendan Nugent, Steve Sinclair, Geoff Suter, Arn Tolsma, Liz Wemyss. Adrian Kitchingman and Matt White conducted desktop site selection, and David Duncan and Annette Muir provided advice on the study design.N
Animal population decline and recovery after severe fire: Relating ecological and life history traits with expert estimates of population impacts from the Australian 2019-20 megafires
Catastrophic megafires can increase extinction risks identifying species priorities for management and policy support is critical for preparing and responding to future fires. However, empirical data on population loss and recovery post-fire, especially megafire, are limited and taxonomically biased. These gaps could be bridged if species' morphological, behavioural, ecological and life history traits indicated their fire responses. Using expert elicitation that estimated population changes following the 2019–20 Australian megafires for 142 terrestrial and aquatic animal species (from every vertebrate class, one invertebrate group), we examined whether expert estimates of fire-related mortality, mortality in the year post-fire, and recovery trajectories over 10 years/three generations post-fire, were related to species traits. Expert estimates for fire-related mortality were lower for species that could potentially flee or shelter from fire, and that associated with fire-prone habitats. Post-fire mortality estimates were linked to diet, diet specialisation, home range size, and susceptibility to introduced herbivores that damage or compete for resources. Longer-term population recovery estimates were linked to diet/habitat specialisation, susceptibility to introduced species species with slower life histories and shorter subadult dispersal distances also had lower recovery estimates. Across animal groups, experts estimated that recovery was poorest for species with pre-fire population decline and more threatened conservation status. Sustained management is likely needed to recover species with habitat and diet specialisations, slower life histories, pre-existing declines and threatened conservation statuses. This study shows that traits could help inform management priorities before and after future megafires, but further empirical data on animal fire response is essential
The conservation impacts of ecological disturbance:Time-bound estimates of population loss and recovery for fauna affected by the 2019–2020 Australian megafires
Aim: After environmental disasters, species with large population losses may need urgent protection to prevent extinction and support recovery. Following the 2019-2020 Australian megafires, we estimated population losses and recovery in fire-affected fauna, to inform conservation status assessments and management.
Location: Temperate and subtropical Australia. Time period 2019-2030 and beyond.
Major taxa: Australian terrestrial and freshwater vertebrates; one invertebrate group.
Methods: From > 1,050 fire-affected taxa, we selected 173 whose distributions substantially overlapped the fire extent. We estimated the proportion of each taxon's distribution affected by fires, using fire severity and aquatic impact mapping, and new distribution mapping. Using expert elicitation informed by evidence of responses to previous wildfires, we estimated local population responses to fires of varying severity. We combined the spatial and elicitation data to estimate overall population loss and recovery trajectories, and thus indicate potential eligibility for listing as threatened, or uplisting, under Australian legislation.
Results: We estimate that the 2019-2020 Australian megafires caused, or contributed to, population declines that make 70-82 taxa eligible for listing as threatened; and another 21-27 taxa eligible for uplisting. If so-listed, this represents a 22-26% increase in Australian statutory lists of threatened terrestrial and freshwater vertebrates and spiny crayfish, and uplisting for 8-10% of threatened taxa. Such changes would cause an abrupt worsening of underlying trajectories in vertebrates, as measured by Red List Indices. We predict that 54-88% of 173 assessed taxa will not recover to pre-fire population size within 10 years/three generations. Main conclusions We suggest the 2019-2020 Australian megafires have worsened the conservation prospects for many species. Of the 91 taxa recommended for listing/uplisting consideration, 84 are now under formal review through national processes. Improving predictions about taxon vulnerability with empirical data on population responses, reducing the likelihood of future catastrophic events and mitigating their impacts on biodiversity, are critical