15 research outputs found

    Early Release Science of the exoplanet WASP-39b with JWST NIRISS

    Full text link
    Transmission spectroscopy provides insight into the atmospheric properties and consequently the formation history, physics, and chemistry of transiting exoplanets. However, obtaining precise inferences of atmospheric properties from transmission spectra requires simultaneously measuring the strength and shape of multiple spectral absorption features from a wide range of chemical species. This has been challenging given the precision and wavelength coverage of previous observatories. Here, we present the transmission spectrum of the Saturn-mass exoplanet WASP-39b obtained using the SOSS mode of the NIRISS instrument on the JWST. This spectrum spans 0.62.8μ0.6 - 2.8 \mum in wavelength and reveals multiple water absorption bands, the potassium resonance doublet, as well as signatures of clouds. The precision and broad wavelength coverage of NIRISS-SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favoring a heavy element enhancement ("metallicity") of 1030×\sim 10 - 30 \times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio, and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are best explained by wavelength-dependent, non-gray clouds with inhomogeneous coverage of the planet's terminator.Comment: 48 pages, 12 figures, 2 tables. Under review at Natur

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’), and thus the formation processes of the primary atmospheres of hot gas giants. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models

    Genetic Polymorphism of Delta Aminolevulinic Acid Dehydratase (ALAD) Gene and Symptoms of Chronic Mercury Exposure in Munduruku Indigenous Children within the Brazilian Amazon

    No full text
    Genetic polymorphisms involved in mercury toxicokinetics and toxicodynamics may be associated with severe mercury toxicity. This study aimed to investigate the impact of an ALAD polymorphism on chronic mercury exposure and the health situation of indigenous children from the Brazilian Amazon. One-hundred-and-three indigenous children (under 15 years old) were included and genotyped (rs1800435) using a TaqMan validated assay. The mean age was 6.6 ± 4.5 years old, 60% were female, 49% presented with anemia, and the mean hair mercury concentration was 7.0 ± 4.5 (1.4–23.9) µg/g, with 49% exceeding the reference limit (≥6.0 µg/g). Only two children were heterozygous ALAD, while the others were all wild type. Minor allele frequency (ALAD G) and heterozygous genotype (ALAD CG) were 1% and 2%, respectively. The two children (12 and 14 years old) with the ALAD polymorphism had mercury levels above the average as well as had neurological symptoms related to chronic mercury exposure, such as visual field alterations, memory deficit, distal neuropathy, and toe amyotrophy. Both children also reported frequent consumption of fish in the diet, at least three times a week. In conclusion, our data confirm that an ALAD polymorphism can contribute to mercury half-life time, harmful effects, and neuropsychological disorders in indigenous children with chronic mercury exposure to gold mining activity

    Early Release Science of the exoplanet WASP-39b with JWST NIRISS.

    Get PDF
    The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy1-4. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality5-9. Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6-2.8 μm in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement ('metallicity') of about 10-30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet's terminator

    Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM

    No full text
    International audienceTransmission spectroscopy of exoplanets has revealed signatures of water vapour, aerosols and alkali metals in a few dozen exoplanet atmospheres. However, these previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the observations’ relatively narrow wavelength range and spectral resolving power, which precluded the unambiguous identification of other chemical species—in particular the primary carbon-bearing molecules. Here we report a broad-wavelength 0.5–5.5 µm atmospheric transmission spectrum of WASP-39b, a 1,200 K, roughly Saturn-mass, Jupiter-radius exoplanet, measured with the JWST NIRSpec’s PRISM mode as part of the JWST Transiting Exoplanet Community Early Release Science Team Program10–12. We robustly detect several chemical species at high significance, including Na (19σ), H2_2O (33σ), CO2_2 (28σ) and CO (7σ). The non-detection of CH4_4, combined with a strong CO2_2 feature, favours atmospheric models with a super-solar atmospheric metallicity. An unanticipated absorption feature at 4 µm is best explained by SO2_2 (2.7σ), which could be a tracer of atmospheric photochemistry. These observations demonstrate JWST’s sensitivity to a rich diversity of exoplanet compositions and chemical processes

    Early Release Science of the exoplanet WASP-39b with JWST NIRISS

    No full text
    The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy1-4. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality5-9. Here, we present the transmission spectrum of WASP-39 b obtained using the SOSS mode of the NIRISS instrument on JWST. This spectrum spans 0.6–2.8 μm in wavelength and reveals multiple water absorption bands, the potassium resonance doublet, and signatures of clouds. The precision and broad wavelength coverage of NIRISS-SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy element enhancement (“metallicity”) of ~10–30x the solar value, a sub-solar carbon-to-oxygen (C/O) ratio, and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-gray clouds with inhomogeneous coverage of the planet’s terminator
    corecore