164 research outputs found

    Blazer and Ashland Oil: A Study in Management

    Get PDF
    Tracing the evolution of the Ashland Oil & Refining Company whose growth was phenomenal even in a rapidly expanding industry, author Joseph L. Massie attributes the success of the company to the flexible management policies of Paul G. Blazer. Joseph L. Massie is professor of economics at the University of Kentucky, which has awarded him the B.S. and M.A. degrees. He holds the Ph.D. degree from the University of Chicago. Massie is the author of many articles on administration and, with a colleague, of a textbook on management.https://uknowledge.uky.edu/upk_business/1003/thumbnail.jp

    A novel androgen receptor-binding element modulates Cdc6 transcription in prostate cancer cells during cell-cycle progression

    Get PDF
    The androgen receptor (AR) plays a pivotal role in the onset and progression of prostate cancer by promoting cellular proliferation. Recent studies suggest AR is a master regulator of G1-S progression and possibly a licensing factor for DNA replication yet the mechanisms remain poorly defined. Here we report that AR targets the human Cdc6 gene for transcriptional regulation. Cdc6 is an essential regulator of DNA replication in eukaryotic cells and its mRNA expression is inversely modulated by androgen or antiandrogen treatment in androgen-sensitive prostate cancer cells. AR binds at a distinct androgen-response element (ARE) in the Cdc6 promoter that is functionally required for androgen-dependent Cdc6 transcription. We found that peak AR occupancy at the novel ARE occurs during the G1/S phase concomitant with peak Cdc6 mRNA expression. We also identified several of the coactivators and corepressors involved in AR-dependent Cdc6 transcriptional regulation in vivo and further characterized ligand-induced alterations in histone acetylation and methylation at the Cdc6 promoter. Significantly, AR silencing in prostate cancer cells markedly decreases Cdc6 expression and androgen-dependent cellular proliferation. Collectively, our results suggest that Cdc6 is a key regulatory target for AR and provide new insights into the mechanisms of prostate cancer cell proliferation

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on twelve research projects.National Institutes of Health Grant 5 R01 DC00117National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R01-DC00270U.S. Air Force - Office of Scientific Research Contract AFOSR-90-0200National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Training Systems Center Contract N61339-93-M-1213U.S. Navy - Naval Training Systems Center Contract N61339-93-C-0055U.S. Navy - Naval Training Systems Center Contract N61339-93-C-0083U.S. Navy - Office of Naval Research Grant N00014-92-J-4005U.S. Navy - Office of Naval Research Grant N00014-93-1-119

    Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue.

    Get PDF
    Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases

    Factors contributing to posttraumatic growth and its buffering effect in adult chidren of cancer patients undergoing treatment

    Get PDF
    This study examined relationships among demographic, clinical, and psychosocial variables in adult children of cancer patients. Two hundred and fourteen participants completed measures of posttraumatic growth (PTG), distress, posttraumatic stress disorder (PTSD) symptoms, social support, and family functioning. Significant gender differences in all PTG dimensions were found, as well as associations among PTG, gender, parental dependency, distress, PTSD, and family functioning. Social support was not a mediator in the relationship between gender and PTG. Gender, education, disease duration, dependency, distress, and family flexibility predicted PTG. Finally, PTG had amoderating effect in the relationship between distress and PTSD/social support. These results may guide psychosocial interventions in this population.Fundação para a Ciência e Tecnologia (FCT

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore