111 research outputs found

    The Atacama Cosmology Telescope: A Measurement of the Thermal Sunyaev-Zel'dovich Effect Using the Skewness of the CMB Temperature Distribution

    Get PDF
    We present a detection of the unnormalized skewness induced by the thermal Sunyaev-Zel'dovich (tSZ) effect in filtered Atacama Cosmology Telescope (ACT) 148 GHz cosmic microwave background temperature maps. Contamination due to infrared and radio sources is minimized by template subtraction of resolved sources and by constructing a mask using outlying values in the 218 GHz (tSZ-null) ACT maps. We measure = -31 +- 6 \mu K^3 (measurement error only) or +- 14 \mu K^3 (including cosmic variance error) in the filtered ACT data, a 5-sigma detection. We show that the skewness is a sensitive probe of sigma_8, and use analytic calculations and tSZ simulations to obtain cosmological constraints from this measurement. From this signal alone we infer a value of sigma_8= 0.79 +0.03 -0.03 (68 % C.L.) +0.06 -0.06 (95 % C.L.). Our results demonstrate that measurements of non-Gaussianity can be a useful method for characterizing the tSZ effect and extracting the underlying cosmological information.Comment: 9 pages, 5 figures. Replaced with version accepted by Phys. Rev. D, with improvements to the likelihood function and the IR source treatment; only minor changes in the result

    Clinicopathological Profile and Surgical Treatment of Abdominal Tuberculosis: A Single Centre Experience in Northwestern Tanzania.

    Get PDF
    Abdominal tuberculosis continues to be a major public health problem worldwide and poses diagnostic and therapeutic challenges to general surgeons practicing in resource-limited countries. This study was conducted to describe the clinicopathological profile and outcome of surgical treatment of abdominal tuberculosis in our setting and compare with what is described in literature. A prospective descriptive study of patients who presented with abdominal tuberculosis was conducted at Bugando Medical Centre (BMC) in northwestern Tanzania from January 2006 to February 2012. Ethical approval to conduct the study was obtained from relevant authorities. Statistical data analysis was performed using SPSS version 17.0. Out of 256 patients enrolled in the study, males outnumbered females. The median age was 28 years (range = 16-68 years). The majority of patients (77.3%) had primary abdominal tuberculosis. A total of 127 (49.6%) patients presented with intestinal obstruction, 106 (41.4%) with peritonitis, 17 (6.6%) with abdominal masses and 6 (2.3%) patients with multiple fistulae in ano. Forty-eight (18.8%) patients were HIV positive. A total of 212 (82.8%) patients underwent surgical treatment for abdominal tuberculosis. Bands /adhesions (58.5%) were the most common operative findings. Ileo-caecal region was the most common bowel involved in 122 (57.5%) patients. Release of adhesions and bands was the most frequent surgical procedure performed in 58.5% of cases. Complication and mortality rates were 29.7% and 18.8% respectively. The overall median length of hospital stay was 32 days and was significantly longer in patients with complications (p < 0.001). Advanced age (age ≥ 65 years), co-morbid illness, late presentation, HIV positivity and CD4+ count < 200 cells/μl were statistically significantly associated with mortality (p < 0.0001). The follow up of patients were generally poor as only 37.5% of patients were available for follow up at twelve months after discharge. Abdominal tuberculosis constitutes a major public health problem in our environment and presents a diagnostic challenge requiring a high index of clinical suspicion. Early diagnosis, early anti-tuberculous therapy and surgical treatment of the associated complications are essential for survival

    The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data

    Full text link
    [Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial equator. A subsample of 48 clusters within the 270 square degree region overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14 Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters, the sample is studied further through a "Profile Based Amplitude Analysis" using a single filter at a fixed \theta_500 = 5.9' angular scale. This new approach takes advantage of the "Universal Pressure Profile" (UPP) to fix the relationship between the cluster characteristic size (R_500) and the integrated Compton parameter (Y_500). The UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters is used to obtain cosmological constraints. We first confirm that constraints from SZ data are limited by uncertainty in the scaling relation parameters rather than sample size or measurement uncertainty. We next add in seven clusters from the ACT Southern survey, including their dynamical mass measurements based on galaxy velocity dispersions. In combination with WMAP7 these data simultaneously constrain the scaling relation and cosmological parameters, yielding \sigma_8 = 0.829 \pm 0.024 and \Omega_m = 0.292 \pm 0.025. The results include marginalization over a 15% bias in dynamical mass relative to the true halo mass. In an extension to LCDM that incorporates non-zero neutrino mass density, we combine our data with WMAP7+BAO+Hubble constant measurements to constrain \Sigma m_\nu < 0.29 eV (95% C. L.).Comment: 32 pages, 21 figures To appear in J. Cosmology and Astroparticle Physic

    Detection of Galaxy Cluster Motions with the Kinematic Sunyaev-Zel'dovich Effect

    Get PDF
    Using high-resolution microwave sky maps made by the Atacama Cosmology Telescope, we for the first time detect motions of galaxy clusters and groups via microwave background .temperature distortions due to the kinematic Sunyaev.Zel'dovich effect. Galaxy clusters are identified by their constituent luminous galaxies observed by the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. The mean pairwise momentum of clusters is measured. at a statistical. significance of 3.8 sigma, and the signal is consistent with the growth of cosmic structure in the standard model of cosmolog

    The Atacama Cosmology Telescope: Data Characterization and Map Making

    Get PDF
    We present a description of the data reduction and mapmaking pipeline used for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from 2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hours of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hours of observation. From these, 1085 hours were devoted to a 850 deg^2 stripe (11.2 hours by 9.1 deg) centered on a declination of -52.7 deg, while 175 hours were devoted to a 280 deg^2 stripe (4.5 hours by 4.8 deg) centered at the celestial equator. We discuss sources of statistical and systematic noise, calibration, telescope pointing, and data selection. Out of 1260 survey hours and 1024 detectors per array, 816 hours and 593 effective detectors remain after data selection for this frequency band, yielding a 38% survey efficiency. The total sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in the time-ordered data stream (TOD), is 32 micro-Kelvin sqrt{s} in CMB units. Atmospheric brightness fluctuations constitute the main contaminant in the data and dominate the detector noise covariance at low frequencies in the TOD. The maps were made by solving the least-squares problem using the Preconditioned Conjugate Gradient method, incorporating the details of the detector and noise correlations. Cross-correlation with WMAP sky maps, as well as analysis from simulations, reveal that our maps are unbiased at multipoles ell > 300. This paper accompanies the public release of the 148 GHz southern stripe maps from 2008. The techniques described here will be applied to future maps and data releases.Comment: 20 pages, 18 figures, 6 tables, an ACT Collaboration pape

    The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data

    Get PDF
    We present constraints on cosmological and astrophysical parameters from high-resolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the tSZ effect and infrared sources. The power ell^2 C_ell/2pi of the thermal SZ power spectrum at 148 GHz is measured to be 3.4 +\- 1.4 muK^2 at ell=3000, while the corresponding amplitude of the kinematic SZ power spectrum has a 95% confidence level upper limit of 8.6 muK^2. Combining ACT power spectra with the WMAP 7-year temperature and polarization power spectra, we find excellent consistency with the LCDM model. We constrain the number of effective relativistic degrees of freedom in the early universe to be Neff=2.79 +\- 0.56, in agreement with the canonical value of Neff=3.046 for three massless neutrinos. We constrain the sum of the neutrino masses to be Sigma m_nu < 0.39 eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and Hubble constant measurements. We constrain the amount of primordial helium to be Yp = 0.225 +\- 0.034, and measure no variation in the fine structure constant alpha since recombination, with alpha/alpha0 = 1.004 +/- 0.005. We also find no evidence for any running of the scalar spectral index, dns/dlnk = -0.004 +\- 0.012.Comment: 26 pages, 22 figures. This paper is a companion to Das et al. (2013) and Dunkley et al. (2013). Matches published JCAP versio

    KELT-25 b and KELT-26 b: A Hot Jupiter and a Substellar Companion Transiting Young A Stars Observed by TESS

    Get PDF
    We present the discoveries of KELT-25 b (TIC 65412605, TOI-626.01) and KELT-26 b (TIC 160708862, TOI-1337.01), two transiting companions orbiting relatively bright, early A stars. The transit signals were initially detected by the KELT survey and subsequently confirmed by Transiting Exoplanet Survey Satellite (TESS) photometry. KELT-25 b is on a 4.40 day orbit around the V = 9.66 star CD-24 5016 (Teff=8280-180+440 K, M ∗ = 2.18-0.11+0.12 M o˙), while KELT-26 b is on a 3.34 day orbit around the V = 9.95 star HD 134004 (Teff = 8640-240+500 K, M ∗ = 1.93-0.16+0.14 M o˙), which is likely an Am star. We have confirmed the substellar nature of both companions through detailed characterization of each system using ground-based and TESS photometry, radial velocity measurements, Doppler tomography, and high-resolution imaging. For KELT-25, we determine a companion radius of R P = 1.64-0.043+0.039 R J and a 3σ upper limit on the companion\u27s mass of ∼64 M J. For KELT-26 b, we infer a planetary mass and radius of M P = 1.41-0.51+0.43MJ and R P = 1.94-0.058+0.060 R J. From Doppler tomographic observations, we find KELT-26 b to reside in a highly misaligned orbit. This conclusion is weakly corroborated by a subtle asymmetry in the transit light curve from the TESS data. KELT-25 b appears to be in a well-aligned, prograde orbit, and the system is likely a member of the cluster Theia 449

    Correlations in the (Sub)millimeter background from ACTxBLAST

    Full text link
    We present measurements of the auto- and cross-frequency correlation power spectra of the cosmic (sub)millimeter background at: 250, 350, and 500 um (1200, 860, and 600 GHz) from observations made with the Balloon-borne Large Aperture Submillimeter Telescope, BLAST; and at 1380 and 2030 um (218 and 148 GHz) from observations made with the Atacama Cosmology Telescope, ACT. The overlapping observations cover 8.6 deg^2 in an area relatively free of Galactic dust near the south ecliptic pole (SEP). The ACT bands are sensitive to radiation from the CMB, the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by radio and dusty star-forming galaxies (DSFGs), while the dominant contribution to the BLAST bands is from DSFGs. We confirm and extend the BLAST analysis of clustering with an independent pipeline, and also detect correlations between the ACT and BLAST maps at over 25sigma significance, which we interpret as a detection of the DSFGs in the ACT maps. In addition to a Poisson component in the cross-frequency power spectra, we detect a clustered signal at >4sigma, and using a model for the DSFG evolution and number counts, we successfully fit all our spectra with a linear clustering model and a bias that depends only on redshift and not on scale. Finally, the data are compared to, and generally agree with, phenomenological models for the DSFG population. This study represents a first of its kind, and demonstrates the constraining power of the cross-frequency correlation technique to constrain models for the DSFGs. Similar analyses with more data will impose tight constraints on future models.Comment: 17 pages, 11 figure
    • …
    corecore